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Abstract 
Computable fields are the primary focus of this paper, 

which contributes to the compelling field hypothesis. If 

the elements of a structure's area are linked with 

regular numbers, then the operations that take place in 

this space are also computable functions. Maps 

between fields can be expanded to maps between their 

mathematical terminations, according to a variety of 

classical results. We're thinking about when this will 

be possible. That is, should there exist a computable 

ex-pressure to the arithmetical terminations if the 

majority of the fields contained are computable and we 

are provided a computable guide? The classical 

theorems hold effectively in a computable field F if 

certain requirements are met, which are both 

important and sufficient. It's possible to apply our 

findings to fields that have been shown to contain 

automorphisms, which are referred to as difference 

fields. This paper investigates how to successfully 

incorporate difference fields within computed 

difference-shut fields (these are existentially shut 

difference fields, to be talked about). For computable 

difference fields, even the most innocent resemblance 

to remarkable consequences fails in every way. A large 

range of fields (including abelian augmentations of a 

prime field) can be found in which the corresponding 

consequence can be better understood. 
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Introduction 

If ℱ is a field, a polynomial ℱ[X] is called separable if 

it has no repeated roots an element a 𝐸𝐸 of an algebraic 

field extension 𝐸𝐸\ℱ is called separable over ℱ if its 

minimal polynomial over ℱ is a separable polynomial. 

An algebraic field extension 𝐸𝐸\ℱ is called separable if 

every element of ∈ is separable overℱ. Recall that if ℱ 

is finite or characteristic zero, then it is perfect, i.e., 

every algebraic extension is a separable extension. An 

algebraic field extension𝐸𝐸\ℱ is called purely 

inseparable if E\F contains no separable elements. 

Equivalently, ∈ is a field of characteristic p >0 and 

every element of ∈is the unique root of a polynomial 
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Xpn − a =0 with a∈F. Given an algebraic field 

extension 𝐸𝐸\𝐹𝐹, the set  

 

Is the maximal separable extension of ℱ inside of ∈and 

is called the separable closure of ℱ in ∈. The field 

extension ∈\ℱs is purely inseparable. In the special 

case where ∈ ℱ is the algebraic closure of ℱ, ℱs is 

called the separable closure of ℱ and is the maximal 

separable extension ofℱ. An algebraic field extension 

∈\ℱ is normal if every irreducible polynomial in ℱ[X] 

that has a root in 𝐸𝐸 factors completely in ∈[X]. Normal 

separable extensions E\F is called a Galois extension 

and has associated to it the Galois group Gal (∈\ℱ) of 

automorphisms of 𝐸𝐸 Fixing ℱ. Recall that the Galois 

group obeys the fundamental theorem of Galois 

Theory: the normal subgroups H Gal (∈\ℱ) correspond 

to the intermediate normal field extensions. 

Computable Fields 

Recall that the splitting set 𝑆𝑆ℱ  of ℱ is the set of all 

polynomials pℰℱ[X] which is reducible overℱ. The 

splitting set of a field is not necessarily computable 

(see but it is always c.e. If the splitting set ofℱ is 

computable, then we say that ℱ has a splitting 

algorithm. Finite fields and algebraically closed fields 

trivially have splitting algorithms. That Q has a 

splitting algorithm, and also that many other field 

extensions also have a splitting algorithm: 

Theorem: The field Q has a splitting algorithm. If a 

computable field ℱ has a splitting algorithm, and is 

transcendental overℱ, then ℱ(a) has a splitting 

algorithm if a separable and algebraic overℱ, then ℱ 

(a) has a splitting algorithm. Moreover, the splitting 

algorithm for ℱ (a) is uniform in the minimal 

polynomial for an overℱgiven a field ℱ and an element 

a is either transcendental overℱ, or separable and 

algebraic over ℱ, we know that ℱ (a) has a splitting 

algorithm. However, the algorithm depends on whether 

is transcendental or algebraic. To find a splitting 

algorithm uniformly, we must know which the case is. 

That every computable field 𝐹𝐹 has a computable 

algebraic closure ℱ, and moreover there is a 

computable embedding 𝜏𝜏ℱ→ℱ. We call such 

anembedding a Rabin embedding. Moreover, he 

characterized the image of F under this embedding: 

Theorem: Let ℱ is a computable field. Then 

algebraically closed field ℱ and a computable field 

embedding 𝜏𝜏ℱ → gebraic over 𝜏𝜏(ℱ). Moreover, for 

any such ℱ and𝜏𝜏, the image 𝜏𝜏(ℱ) equivalent to the 

splitting set of ℱThere is a computable ℱ such that ℱ 

is al-off ℱ inℱ is Turing𝐴𝐴 computable field ℱ has a 

dependence algorithm if given a and b1...bn, we can 

compute whether a is algebraically independent over 

b1. . . bn.𝐴𝐴 field has a dependence algorithm if and only 

if it has a computable transcendence base (see, for 

example. In particular, fields of finite transcendence 

degree have a dependence algorithm. Convention By 

an extension 𝜖𝜖\ℱ of computable fields, we mean that 

there is a computable embedding of ℱ into𝜖𝜖. 

Difference Fields 

Difference fields were first studied by Ritt in the 

1930s. A good reference on the classical algebraic 

theory of difference fields is the book. A difference 

field is a field ℱ together with an embedding σℱ→ℱ. 

If σ is onto, (ℱ, σ) is called inversive. As every 

difference field has a unique inversive closure up to 

isomorphism, we lose nothing by assuming that all of 

our difference fields are inversive. 

A difference field (ℱ, σ) is called a difference closed 

field if it is existentially closed in the language of 

difference fields. Difference closed fields arose in the 

model theoretic study of difference fields. ℱ Is 

difference closed if and only if? 
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σ is an-automorphism of ℱ;  

ℱ Is algebraically closed;  

The condition (iii) may be viewed as saying that 

certain systems of equations and in equations have 

solutions in F. Conditions (i), (ii), and (iii) axiomatize 

the theory ACF A of difference closed fields. ACFAP 

is decidable, and moreover the theories ACF Ap of 

difference closed fields of characteristic p are also 

decidable for any p, including p. ACF A is the model 

companion of the theory of difference fields and hence 

every formula is equivalent, modulo ACF A, to an 

existential formula. 

Thus, we have: Every computable difference closed 

field has a computable (full) elementary diagram. We 

call a structure with a computable elementary diagram 

decidable; thus every difference closed field is 

decidable. 

Extending Embeddings into the Algebraic Closure 

We begin by showing that if ℱ is any computable field 

with a splitting algorithm, 𝜏𝜏F →ℱ is a Rabin 

embedding, and αℱ→𝜅𝜅 is a computable embedding of 

ℱ into an algebraically closed field 𝜅𝜅, then there is a 

computable embedding of ℱ into ℱ extending α. In 

particular, the new results here are in the case of 

characteristic p>0. The new issue we have to deal with 

in characteristic p>0 is that Theorem 2.1 fails for non-

separable extensions. We begin by finding the 

separable closure of a field F within its algebraic 

closureℱ. 

Lemma Let ℱ is a computable field. Then the 

separable closure of ℱ is c.e. If ℱhas a splitting 

algorithm, then the separable closure ℱs of ℱ in ℱ is 

computable (so that have a plitting algorithm). 

Proof. Embed F in its algebraic closureℱ. An element 

a  ℱ is separable if and only if there is a polynomial 

p(X) ℱ[X] of degree m with p (a) 0 and with m distinct 

roots inℱ. Thus the separable closure of ℱ is c.e. If ℱ 

has a splitting algorithm, then given 𝛼𝛼 ∈ ℱ we can find 

the minimal polynomial p of an overℱ. Then 𝛼𝛼is 

separable over if and only if p has no repeated roots, 

which happens if and only if p (a) = 0. (Here, p′(X) is 

the derivative of (ℱ) with respect to, treating the 

coefficients as constants.) So separable closure of ℱ is 

computable we are now ready to extend an embedding 

from a field with a splitting algorithm. The main idea 

is to break the embedding into two steps; first to extend 

an embedding ∞ℱ→𝜅𝜅 to an embedding βℱs →𝜅𝜅 of the 

separable closure of ℱ into𝐾𝐾 and second to note that β 

extends to a unique embedding ofℱ into 𝜅𝜅and that this 

extension is computable from β. 

Theorem: let ℱ be a computable field and 𝜄𝜄ℱ→ ℱ a 

Rabin embedding of ℱ into its algebraic closure. 

Suppose that ℱ has a splitting algorithm. Then there is 

a Turing functional Φ such that whenever α ℱ→ is an 

embedding of ℱ into an algebraically closed field𝜅𝜅, 

ΦαKℱ → 𝜅𝜅 is an embedding of ℱ into 𝜅𝜅𝜄𝜄-extending α. 

Proof. Since ℱ has a splitting algorithm, the image 𝜄𝜄(ℱ) 

of 𝜅𝜅 in ℱ is computable. We may identify ℱ with its 

image. By Lemma 3.1 the separable closure ℱs of ℱ is 

computable as a subset of ℱ and has a splitting 

algorithm. 

Let 𝜅𝜅 be an algebraically closed field and α: F → 𝜅𝜅 a 

field embedding. We will begin Extend α to an 

embedding βFs →𝜅𝜅.  Leta, a . . .} be by describing a 
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procedure to s an enumeration of the elements F.  Start 

with β defined only on ℱ and ı-extending α.  

Using the splitting algorithm for F, find the minimal 

polynomial P1ℱ[X] of a1 overℱ. Find a solution b1𝜅𝜅 to 

α (P1). Then define β on ℱ(a1) by mapping a1 to b1. 

Since a1 is algebraic and separable over F (and we 

know its minimal polynomial), we have a splitting 

algorithm for ℱ (a1). The separable closure of ℱ(a1) is 

ℱs. Now find the minimal polynomial P2ℱ[X] of a2 

over ℱ(a1), and a solution b2 to α (P2). Define β on 

ℱ(a1, a2) by mapping a2 to b2. Note that a2 is separable 

over ℱ(a1) since 

 

And ℱs is a separable algebraic extension ofℱ. Since a2 

is algebraic and separable over ℱ(a1), we have a 

splitting algorithm for ℱ (a1, a2). Its separable closure 

is still Fs. Continuing in this way, we define and 

embedding β ℱs → 𝜅𝜅 which ı-extends α  ℱ →𝜅𝜅. 

In characteristic zero, we are done since ℱsℱ. In 

characteristic p0, we can extend β to an embedding 

ℱ→𝜅𝜅 in the following manner. Given bℱ, find the 

minimal polynomial P  ℱs[X] of b over ℱs (recalling 

that Fs have a splitting algorithm). Then P (X) is of the 

form Xpn − r 0 with rℱ. Note that b is the unique 

solution of p(X) 0, and we can find the unique solution 

c to β (p) (X) 0. Map b to c. This is the unique 

embedding of ℱ into 𝜅𝜅 extending β. 

The construction was uniform in α and 𝜅𝜅 and so we get 

the desired Turing functional Φ. 

We are now ready to prove Theorem  1.1, which says 

that a field has a splitting algorithm if and only if it has 

the computable (or uniform) extend-ability of 

embeddings property. 

Proof of Theorem 1 the implication (1) (2) is Theorem 

3 The implication (2) (3) is immediate. It remains to 

show the implication (3) (1). 

Fix ℱ →ℱ, a computable embedding of ℱ into a 

computable presentation ℱ of its algebraic closure. 

Suppose that every computable embedding of ℱ into a 

computable algebraically closed field 𝜅𝜅𝜄𝜄-extends to a 

computable embedding ofℱ into𝜅𝜅. 

We will attempt to construct a computable field 𝜅𝜅 and 

a computable embedding αℱ → 𝜅𝜅 while attempting to 

diagonalize against all potential computable extensions 

φe ℱ→ 𝜅𝜅 (by having α(a)  φe(ı(a)) for some a  ℱ). We 

know that the construction must fail, and from this we 

will conclude that F has a splitting algorithm. 

We construct 𝜅𝜅 by an effective   Henkin-style 

construction. The Henkin construction will be similar 

to one that can be used to prove Rabin’s theorem that 

every field embeds into a computable presentation of 

its algebraic closure. See, for example, where this 

construction is carried out in reverse mathematics. 

(Rabin’s original proof constructed the algebraic 

closure using a quotient of a polynomial ring with 

infinitely many variables.) Let LF be the language of 

fields with constant symbols for the elements ofℱ, and 

let T be the consistent theory of algebraically closed 

fields together with the atomic diagram ofℱ. By 

quantifier elimination for the theory of algebraically 

closed fields, T is a complete theory and hence is 

decidable. We want to construct a decidable prime 

model of the theory T, which gives an algebraic closure 

𝜅𝜅 of ℱ together with an embedding of ℱ into𝜅𝜅. The 

embedding α ℱ→ 𝜅𝜅 will be built as part of the Henkin 

construction. Constructing a prime model requires a 

slight modification of the Henkin construction, which 

is possible in this case—we must also omit the type of 

an element that is transcendental over 𝜅𝜅 for the general 

theorem on effectively omitting types). 
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Let C = {c0, c1 . . .} be the new constant symbols for 

the Henkin construction. The domain of K will be the 

equivalence classes of some computable equivalence 

relation on C. Let φeℱ → C be a list of partial 

computable functions which we interpret as the 

possible computable embeddings ℱ→𝜅𝜅. Let {a0, a1, a2 . 

. .} be a computable enumeration ofℱ. We use ai to 

denote the constant symbol associated with aiℱ. 

Construction At each stage s, we define formulas δ0. . . 

δs in the language L∪C which form the partial diagram 

of 𝜅𝜅 at stage s. The theory = {δ0, δ1 . . .} will be a 

complete theory extending T which is the complete 

diagram of the model 𝜅𝜅 (with the domain of 𝜅𝜅 being 

the equivalence classes in C by the equivalence 

relation c d  c = d). At stage s, let ψs = δ0ℱ δs1. We can 

arrange the construction so that the only constant 

symbols from ℱ that appear in δs are a0. . . as. 

At stage 0, let δ0 be c0 = c0. 𝜅𝜅 

At stage s = 4t + 1, we try to diagonalize against a φe 

for e ≤ t. Search for an e ≤ t and an i<s+5 such that 

φe,t(ı(ai)) = cj and (where c=(c0, c1, . . .) is the sequence 

of constants from C that appear in ψs): 

By ψs[x¯~c¯], we mean that the variables x¯ = (x0, x1, . 

. .) have been substituted for the constants c¯ = (c0, c1, . 

. .). This is a bounded search since T is decidable and 

we only have to search through finitely many ai. If 

such an e exists, choose the least e such that we have 

not yet diagonal zed against φe. Then set δs to be the 

formula ai ≠ cj for that e. If no such e exists, set δs to be 

the formula c0 = c0. 

At stages s = 4t + 2, s = 4t + 3 and s = 4t + 4, we act as 

in the standard method of constructing a computable 

prime model (e.g., Theorems 5.1 and 7.1 of 

Harizanov’s survey, as follows: is of the form (x) φ (x), 

then  

At stage s = 4t + 2, we add a Henkin witness for δt. If δt 

Let ci be a constant which does not appear in ψs and let 

δs be φ(ci). Otherwise, set δs to be the formula c0 

= c0. 

At stage s = 4t+3, we satisfy the completeness 

requirement for the sentence χt from some fixed listing 

(χt)tω of the sentences in the language L∪C . Let c¯ be 

the constants from C which appear in ψs and χt. Check 

whether if this is the case, let δs be χt. Otherwise, let δs 

be ¬χt. 

At stage s = 4t+4, we omit the type of an element 

transcendental overℱ. We will have ct satisfy some 

polynomial overℱLet c¯ be the constants from C 

which appear in ψs, except for ct. Search for a 

polynomial p(x)ℱ[X] such that Set δs to be the formula 

p(ct) = 0. Some such polynomial p must exist as the 

type of a transcendental over ℱ is a non-principal 

type. 𝜑𝜑 

Verification By the standard Henkin construction 

arguments, we get a decidable prime model 𝒦𝒦 whose 

domain consists of equivalence classes from C. We get 

a computable embedding α of ℱ into 𝒦𝒦 by mapping 

𝛼𝛼ℱ to the element of 𝒦𝒦labeled by the symbol𝛼𝛼. Then 

α extends to an embedding β of ℱ into𝒦𝒦, which we 

may represent as a computable map φe ℱ→𝐶𝐶 (by, say, 

choosing φe(a) to be the least element of C in the 

equivalence class of β(a), which we can do computably 

since the equivalence classes are computable).There is 

a stage s0 after which we never diagonalize against an 

e′< e. We never diagonalize against e. 

Claim. Let b∈ ℱ and t be a stage such that φe,t(b) ↓= cj 

for some j𝜀𝜀ω. Let s = 4t + 1. Then b∈> 𝜏𝜏(F) if and 

only if there is some i such that  
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Proof. Given (∗), in K the constant symbol ai is 

interpreted as the equivalence class of cj . Thus α maps 

ai to the equivalence class of cj since β extends α and is 

one-to-one, 𝜏𝜏(ai) = b. On the other hand, suppose that 

b 𝜏𝜏(F), say b = ai, and suppose to the contrary that (∗) 

does not hold. We have two cases. First, if i < s + 5, 

then we set δs to be the formula a′i ≠ cj. Then α(ai) ≠ cj 

= φe(ı(ai)),′which′ is a contradiction.′ Second, if i ≥′s+5, 

then′ let s>s be the first stage′of the form s=4t+1 with 

i<s+5. We have i>s (as if i≤s′we could have chosen s′ − 

4). Since the only constant symbols from F that appear 

in ψsare a0..... as′, and i> s, ai does not appear in ψs. 

Then we have we set δs′ to be the formula ai ≠ cj which 

again yields a contradiction.  

Hence (∗) holds, The claim gives us a decision 

procedure for 𝜏𝜏(∗)ℱ. At any stage s, there are only 

finitely many constants c ∈C mentioned in ψs, and 

hence only finitely many ai such that we might 

possibly have (∗). So given b∈ ℱ, compute s = 4t+1 ≥ 

s0 and j such that φ b ↓= cj,ℱ e,t(∗) and then check (∗) 

for the finitely many possible ai to decide whether 

b𝜏𝜏(ℱ).    

Corollary Let ℱ be a computable algebraic field and 

ℱ→ℱ a computable embed-ding of ℱinto a 

computable presentation of its algebraic closure. Let 𝜅𝜅 

be a computable algebraically closed field.  

Then the following are equivalent: 

ℱ Has a splitting algorithm,  There is a Turing 

functional Φ which takes an embedding α∈ ℱ→ 𝜅𝜅 to 

an embedding Φα of ⊓into 𝜅𝜅 extending α,  Every 

computable embedding of every computable 

embedding of into 𝜅𝜅 ı-extends to a computable 

embedding of into 𝜅𝜅 Proof. By Theorem 1.1, it success 

to show that in the statement implies that ℱ has the 

computable extend-ability property with respect to 

ιℱ→ℱ.  

Let α∈ ℱ→𝐿𝐿 be a computable embedding of ℱinto a 

computable algebraically closed field 𝐿𝐿.  

We can enumerate, in𝐿𝐿, the algebraic closure of the 

prime field and this contains the image α (ℱ). So we 

may assume that 𝐿𝐿 is the algebraic closure of its prime 

field. 

We can compute an embedding 𝐿𝐿 →𝜅𝜅 and let α (ℱ) 

→𝜅𝜅 be α. By (3), there is an embedding β α (ℱ) → K 

which ı-extends β  

 

 

Conclusion 

We will conclude this paper by applying our results to 

difference closed fields. The main idea will be to note 

that (ℱ, σ) embeds into a computable difference closed 

field if and only if there is an embedding ı of ℱ into 

ℱand an automorphism τ of ℱ such that τ ı-extends σ. 

In the one direction, this will follow from an effective 

Henkin construction, while on the other hand it will 

follow from the fact that the algebraic closure of the 

prime field can be enumerated in any difference closed 

field. 
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