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Abstract 

In the context of two prime monotone boolean functions, denoted as f : {0,1}n → {0,1} and g : 

{0,1}n → {0,1}, the Dualization Problem arises when we aim to determine whether g is the dual 

counterpart of f. In other words, we seek to establish if, for all possible inputs (x1,...,xn) 

belonging to {0, 1}n, the values of f(x1,...,xn) and 𝑔̅(𝑥1̅̅ ̅,...,𝑥𝑛̅̅̅̅ ) are identical. This Dualization 

Problem can also be formulated as a decision problem: when presented with two monotone 

prime boolean functions, f and g, our objective is to determine if g indeed serves as the dual 

function to f. 

This paper introduces a quantum computing algorithm specifically designed to address the 

decision variant of the Dualization Problem efficiently. Our algorithm exhibits a polynomial 

time complexity, offering a significant improvement over classical methods. 
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Introduction 

A boolean function is considered to be monotone if, for any two boolean vectors v = (v1,...,vn) 

and w = (w1,...,wn), it holds that vi ≤ wi for all i ∈ {1,...,n}, which implies that f(v) ≤ f(w). 

The dualization problem involves a monotone boolean function f : {0,1}n → {0,1} expressed in 

a prime disjunctive normal form (DNF), which means it is irredundant. The objective is to find 

the prime DNF of a monotone boolean function g that satisfies the condition f(x) = 𝑔̅(𝑥̅) for all 

x ∈ {0,1}n. The dualization problem, known as dual, refers to the decision version and is 

defined in the following manner: When presented with two prime monotone boolean functions, 

f and g, the question arises: is g the dual of f? The issue of dualization, along with its 

corresponding decision version, is a significant challenge that has garnered attention in various 

research domains, including machine learning, data mining, and artificial intelligence (AI) 

among others (refer to the relevant literature and citations within for further details). Utilizing 

the notation borrowed from the aforementioned source, we represent the monotone boolean 

functions f and g in Disjunctive Normal Form (DNF) as follows: 

 

and 

 

Let I and J be subsets of the set {1,2,...,n}, and let F and G represent the sets of prime implicants 

of functions f and g, respectively. The optimal deterministic classical computing algorithm for 

solving the dual problem exhibits a computational complexity of O(No(logN)), where N represents 

the count of prime implicants for functions f and g. Specifically, N is calculated as the sum of 

the cardinalities of sets F and G, denoted as |F| and |G|, respectively. The assessment of the 

complexity status of the dualization problem and its corresponding decision version is a 

significant unresolved matter. The self-dualization problem is of equal interest, as it involves 

determining whether a monotone boolean function possesses self-duality. The complexity of the 

problem is equivalent to that of the dual problem, as it can be simplified by applying self-

dualization to the function yf ∨zg ∨yz, where y and z represent two supplementary boolean 

variables. This paper presents a novel quantum computing algorithm for efficiently solving the 

dual (and self-dual) problem within a polynomial time complexity framework. 
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Methods 

The variable x is interpreted in two different ways throughout the following. In some instances, 

it represents a boolean or binary n-dimensional vector. In other instances, it represents the 

decimal expression of the binary vector. If x represents the decimal value of the binary vector 

(x1,..., xn), then the decimal value of the binary vector (𝑥̅1,...,𝑥̅n) is 𝑥̅= 2n - x -1 can be obtained. 

The paper commences by introducing a set of propositions that will be frequently referenced 

throughout the subsequent sections. 

Proposition 1: A necessary condition for two monotone boolean functions, g and f, expressed in 

their Disjunctive Normal Form (DNF), to be mutually dual is that 

 

Proof. If there are implicants I ∈ F and J ∈ G such that I J =, then let x = (x1,...,xn) be such that 

xi = 1 if I ∈ I and xi = 0 if i /∉ I. This will allow us to determine whether or not there is a 

contradiction in the statement. Since f(x) = 1 = g(𝑥̅), it is obvious that f and g cannot both be 

dual to each other.  

According to Proposition 1, in order for f to be a self-dual, each implicant of F has to intersect 

each and every other implicant. 

Lemma 2. Let's assume that f is a self-dual. Therefore, f is in equilibrium, which means that for 

half of the values of x it is 0, and for the other half it is 1. 

Proof. If x is between 0 and 2n, then x must equal 2n minus x plus one. In addition, since f is a 

self-dual function, we have that f(x) ≠ f(𝑥̅) for any values of x ranging from 0 to 2n inclusive. 

Because of this 

 

Lemma 3. Let f be a monotone boolean function that satisfies both (1) 

and its DNF expression, and let it be stated as a DNF. If and only if 
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this condition holds, then f is a self-dual. 

Proof. Lemma 2 demonstrates the need of the situation. As for the sufficiency, let's assume that, 

 and let's also assume by contradiction that f(x) = f(𝑥̅) for any 0 ≤ x < 2n range 

of values of x. Given that (1) is true, there must be an implicant I such that xi = 1 for any i that 

fall inside I when f(x) = 1. But if I overlaps all of the other implicants of F, then f(x) must equal 

zero. To put it another way, f(x) + f(𝑥̅) 1 for all values of x. Because of this, we need to ensure 

that f(z) = f(𝑧̅) = 0 for any z with 0 to 2n in the range. But given that 

 

In order to avoid a contradiction, we must ensure that f(x) + f(𝑥̅) = 1 for every possible value of 

x between 0 and 2n-1. 

The Hamming weight of the integer 0 up to and including x up to and including 2n is denoted by 

the number of ones in the binary representation of x. Another way to put this is to say that if x = 

(x1,...,xn) is a binary vector, then . 

According to what we've discussed, the difficulty of the dualization issue is evaluated with 

regard to the total size of f and g, or more specifically, with respect to the formula N = |F| + |G|. 

In addition, it is stated in that the number n of variables that are used by boolean functions is 

always lower than the values represented by the symbols |F||G|. However, there are cases of the 

self-dual issue in which N = O(2n), such as the one that is shown below as an illustration. 

If n > 4 odd, then the following boolean function 𝜑, whose collection of implicants is to be 

considered: F is the collection of all subsets of the set "{1,...,n}" with the cardinality "[n/2]," 

where [a] is the smallest integer that is either bigger than or equal to a. 

Lemma 4. The function denoted by is a self-dual, and the total number of implicants it has is 

.. 

Proof. To a trivial degree . |I⋂ J| = |I|+|J| = 2[n/2] > n This results in a contradiction 

due to the fact that the number of variables is n. If there are two implicants I and J such that I ⋂ 

J = then |I⋃ J| = |I|+|J| = 2[n/2] > n. Therefore, it follows that (1) is correct. 

Because every implicant I of (x) has cardinality |I| = n/2, we may deduce that (x) = 0 for each x 

such that w(x) n/2. This is because w(x) is less than n/2. On the other hand, if w(x) is less than 
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n/2, then (x) is equal to 1, since if we think of x as a binary vector, we will always find an 

implicant I such that xi = 1 for all i that are less than I. This is because x is a binary vector. It is 

now a simple matter to confirm that the equation |x: w(x) n/2| equals 2n1. In accordance with 

Lemma 3, is a self-dual. 

  

The quantum computing algorithm 

If we are provided with two boolean functions, f and g, we can construct the function h(x) as 

follows: h(x) = f(x)⨁ 𝑔̅(𝑥̅), where ⨁ represents the sum modulo two. 

Take note that h may be derived from f and g by using a logic gate count that is linear in nature. 

If f(x) equals 𝑔̅(𝑥̅) for all values of x, then h(x) must equal 0 for all values of x. We construct a 

black box called Uh that is capable of performing the transformation |x>|y> to |x 〉 |y to h(x)i, 

where x may range from 0 to 2n. In the Deutsch-Joshua algorithm, the blackbox plays an 

important role. We haven't gotten to the qubits yet, but the measurements for the first 

 

When h(x) = 0 for every x, the chance of measuring for |z〉 i = |0〉 is equal to 1 because of the 

fact that this is the case. 

 

Therefore, the next observation is as follows: 

Remark 5. Let there be two monotones prime boolean functions called f and g, and let h equal f 

minus g. If we measure a value |x〉 = |0〉 at the conclusion of the Deutsch-Joshua method with 

the blackbox function h, then f is not the dual of g. 

Following is an example of a straightforward quantum algorithm that can be derived from 

Lemma 1, Remark 2, and Lemma 3 to determine whether or not a function f is self-dual. 

Algorithm Quantum Dual 

Input: A black box≤ x < 2n and Uf  which 

performs the transformation f(x) ∈ {0,1} 

|x〉 |y〉 → |xi|y ⊕  
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Output: True if f is self-dual and False otherwise. 

Procedure: 

1. Checking whether or not f is balanced may be done using the Deutsch-Joshua algorithm. 

If the result of running the Deutsch-Joshua method is equal to |0i, then the result should be 

False, and the program should end. 

 

2. Let . Check whether or not equal to h remains constant by using 

the Deutsch-Joshua method. If the result of running the Deutsch-Joshua algorithm does not 

equal |0i, then the program will end with the result False and it will quit. 

3. Use the Quantum Counting algorithm to count the number of x such that f(x) = 1 using t 

= ⌈n/2⌉ qubits to measure the phase angle. If the measurement at the end of the algorithm is |y〉 

and if y 6= 2t−2 then output False and exit. 

4. Use the Grover algorithm to find an x such that f(x) = f(x). If such x is found then output 

False and exit. 

5. Output True 

The complexity of the algorithm is dominated by the complexity of the Quantum Counting and 

of the Grover algorithms. Both algorithms achieve a complexity on the number of quantum 

gates which is O(2n/2) while the best deterministic classical computing algorithm has time 

complexity of O(No(logN)) . However, we saw in Lemma 4 that a self-dual function can have a 

number of implicants in its DNF equal to  which is asymptotic to O(2n). Therefore, we 

have that N ≤ 2n from which we obtain that the complexity of our quantum algorithm for the 

dualization problem is O(√𝑁). 
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