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Abstract

In this paper, we have analyzed the reflection and
refraction phenomena due to an incident coupled
dilatational wave striking obliquely at the plane
interface between a thermo-viscoelastic half space and
a thermo-viscoelastic half-space with voids. Amplitude
ratios of different reflected and refracted (or
transmitted) waves have been provided in closed form
for incidence of a set of coupled dilatational waves and
basic governing equations are formulated in the
framework of the three-phase-lag thermoelasticity
theory. For a magnesium crystal material, expressions
for reflection/refraction coefficients are computed.
Through a variety of graphs, variations in the modulus
values of the reflection/refraction coefficients have
been shown as functions of the angle of incidence of
the striking wave. These graphical representations
highlight the effects of phase lag parameters and voids
on the amplitude ratios of different reflected/refracted
waves.
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Nomenclature

Ty Components of stress tensor
Aoy M, Lame’s constants
Ay, O Viscoelastic relaxation times
B, (3% +24,) e,
o, Coefficient of linear thermal expansion
C, Specific heat at constant strain
K Thermal conductivity
. Cal A2
K M , material constant
T Absolute temperature
i Reference temperature
® Temperature
deviation from the reference temperature
C
O=T-T,,|—=1
Ty
u; Components of displacement vector
Yol Density of the medium
€; Components of strain tensor
€ e, cubical dilatation
1 Change in volume fraction field
o Kronecker delta function
h. Components of equilibrated stress vector
qi' Components of heat flux vector
a,b, & Void material parameters
m Thermo-void coefficient
X Equilibrated inertia
t Time variable
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1. Introduction

According to the traditional thermoelasticity concept, when an elastic material is exposed to a thermal
disturbance, the effect is immediately felt at a location far from the source. This demonstrates that thermal signal
vibrates at an infinitely fast rate, which is an impractical conclusion. Lord and Shulman [1] developed a generalized
thermoelasticity theory with one relaxation time (single-phase-lag theory) to address this important problem. By
including temperature-rate among the constitutive relations (thus creating temperature-rate-dependent
thermoelasticity), Green and Lindsay [2] proposed a significant theory of generalized thermoelasticity with two
relaxation times. Additionally, Tzou [3] and Chandrasekharaiah [4] offered a dual-phase-lag (DPL) heat conduction

model to include the impact of microscopic interactions in the fast-transient process of heat transfer mechanism in a

macroscopic formulation. According to this model, the classical Fourier’s law ¢, = —KV® has been replaced by
q (xi,t+rq):—KV®(xi,t+rT),
where the heat flux (; generated at position X; at time t+ 7, is the result of the temperature gradient developed at

another time T+ z; across a solid. The delay time 7; emphasizes the micro-structural interactions. The other delay

time 7, highlights the fast-transient influences of thermal inertia. Abo-Dahab et al. [5] examined the effects of

gravitational field and rotation on an electro-magneto-elastic material with diffusion and voids using the dual-phase-
lag model of generalized thermoelasticity. In accordance with three different generalized thermoelasticity theories,
Mondal and Othman [6] investigated the effects of memory dependent derivative on piezo-thermoelastic material
using the normal mode approach.

A continuum body with voids is one that has small pores distributed uniformly throughout its volume. The
traditional theory of elasticity has been extended by Cowin and Nunziato's [7] idea of elastic material with voids.
According to this idea, the voids that exist in the medium are empty pores that have some surface area and volume.
The bulk density of the material is expressed as the product of the matrix density and the void volume fraction field,
according to the linear theory of elastic material with voids. According to the idea, the variation in the void volume
fraction counts as a separate extra kinematic variable. Corresponding to this new kinematic variable, a force termed
as ‘equilibrated stress’ is introduced, which denotes the resultant force in the matrix acting on a void as a result of its
interaction with neighbouring voids. Cowin and Nunziato [7] have obtained the constitutive relations and field
equations for a homogeneous elastic material with voids using the concepts of continuum mechanics. Puri and
Cowin [8] were the first to investigate the possibilities of plane wave propagation in elastic material with voids and
discovered that there might be three plane waves propagating at different rates.

The idea of thermoelastic solids with voids is a great generalization of the classical coupled thermoelastic
model by lesan [9]. In addition to introducing the condition for acceleration wave propagation in an isotropic,
homogeneous thermoelastic solid with voids, he also supplied the fundamental governing equations. Furthermore,
he stated that temperature factors and voids had little impact on the shear wave's vibration. lesan's idea [9] has been
the subject of numerous insightful research projects that have been examined by academics all around the world. A
research on wave propagation in a homogeneous, isotropic generalized thermoelastic half-space with voids was
published by Singh [10]. In order to tackle a two-dimensional problem of a micropolar porous circular plate with a

three-phase-lag model under the umbrella of two temperature generalized thermoelasticity, Kumar et al. [11] applied
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Laplace and Hankel transforms. A novel nonlocal theory of generalized thermoelastic materials with voids and
fractional derivative heat transmission was presented by Bachher and Sarkar [12]. Mondal et al. [13] studied the
propagation of plane waves in a nonlocal thermoelastic material with voids within the setting of dual-phase-lag
(DPL) model of generalized thermoelasticity. A two-dimensional problem of thermo-mechanical interactions in a
functionally graded elastic material with voids and gravity was examined by Gunghas et al. [14] using the LS
theory.

2. Problem formulation

Consider a linear homogeneous, isotropic, magneto-thermo-viscoelastic solid half-space with voids (

M :0< Z<o0) and a thermo-viscoelastic half-space (M :—00 < Z < 0) in welded contact separated by Z=0.

Rectangular cartesian co-ordinate system has been chosen with origin at the interface Z =0. The x-axis is taken
along the interface between these half-spaces and positive z-axis is pointing vertically downwards into the medium

M. For two-dimensional motion parallel to xz-plane the displacement vector (U = (U, v, W)) components, change
in void volume fraction ¢ and temperature © are
u=u(xzt),v=0w=w(x z,t), g=¢(x,2,t) and @ =0(x,z,t).

The dynamical equations for Medium M may be written as follows:

The constitutive relation is
T, = A0 U, +,u*(u”. +Uj’i)+b¢5ij —,B*@cSij. (1)

The parameters A, 1" and B are defined as

/’t*z/le(l+a0§J i ,ue(lJral jﬂ ,6’(1+ﬂ j

where B, = (34, + 24, ), = (340, + 2,ueocl)i

e

The balance of linear momentum in the presence of body forces F, may be written as

ol =175 ;. @
Again, the volume fraction field ¢ satisfies the following equation (lesan [15])

aVig—b(V-U)-&p+mO = prg . 3

The heat equation corresponding to generalized thermoelasticity theory with three phase lags (Roychoudhuri [7]) is
\ o o CAY IR d 0
Kill+z, — [+K |1+, — | |VO=|1+7, +—— .0+ Te+mT 4
[ [ Uatj at( Tatﬂ [ S |(peB+ 5 #). @

Substituting (1) into (2), one can obtain

o%u oe 8

) ﬁ o &¢’ ©)
oW .. .oe 00 o

e P ©

IJRTS Journal of Research | 2347-6117 | Volume 22 | Issue 01 | Version 1.2 | Jan-Jun 2022



Page |149

For convenience, we will make use of the following non-dimensional quantities

w —
(x\2)==(x.2), (Va0 75,7077, ) = @t 0y, 01, 74,7, 71, )
1

’ ! pCT)Cl ! @ 4 a_)ZZ ! - 1
u,w)="L(u,w), O=—, ¢'= AT T )= == (T Ty ) ()
( ) ﬂeTo ( ) To ¢ C12 ¢ ( X zz) ,BeTo( X zz)
__,ocecl2 A 24, - - -
where a)——K , C, = ,|— are the characteristic frequency and longitudinal wave velocity in the
o,

medium respectively.
For investigation of plane waves, the potentials v/, (X, Z,t),y,(X,z,t) are introduced. They are related to

displacement components u and w by the relation

u:al//l_al//z, W:a‘//1+al//2 , ®)
OX 0z oz OX
Plugging the non-dimensional quantities and potentials into Eqgs.(3)-(6) under two-dimensional formulation, one can
get
0 o’y
(1+ ala]vzt//z =q 8t22 : ©)
2, d ) Py d
|:)u—e(1+ 050 aj‘FZ[l‘i‘ 0{1 aji|vzl//l —31 atzl —(1+ﬂaj]/2®—a2¢ =0 , (10)
Vip—a,(Viy, )-ag+a0-ah=0, (1)
o) o Ak , Ze? ( 9, .. j
a,|l+7,— |+—|1+7, — || VO=|1+7,+—2— || O+a,(L+ B—)y, + , (12
{7[ Uatj at( Tatj} { q 2&2] 3 (. ﬂat)‘//l Q¢ |, (12)
2
where a =&,
He
phe; bxBT e mTx
a, = C1_2 y 8= a8, ==L, a,=—2%,
BTop 0"y apC wa o
2 * 2: 4
PCLX K BT, mc
a, = G A, =——, g, =t L g — 1
a Ko Kpw Kyw

Eq. (9) is uncoupled while equations (10)-(12) are coupled in /;, ® and ¢.

To suit the actual situation of the problem, we seek solutions of differential equations (9)-(12) in the following
forms:

[v1 2.0, 8](x, 2, t)=[ 7, 7,0, ¢ |exp{ik(xsin 6 —zcosd) — 1t} (13)
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where k is the wave number and @ is angular frequency connected by the relation @ =KV , V being the phase
velocity and (Sin @, —cos @) denotes the projection of wave normal of incident wave onto the xz-plane. Barred

quantities are the amplitudes of the field quantities.
Injecting Eq.(13) into Eqgs.(10)-(12), we get respectively

(a,0°V? + 10’8, )7, + (1N *y* B))O+aV g =0, (14)
o’a, +aN 0+ (a0 V-0’ -aV )¢ =0, (15)
and 100" BB, + (0°Tr o + 108,70 +V *8,, )0 + 852,V °§ =0, (16)

l l l
where Oy =0y +—, Qy=0,+—, ﬁ00:ﬁ+—,
@ (7 (4

l L
z-L)O:Tu_l—_’ z-TO=TT+_'

w 10
2 2
Y [/160500 + Zﬂea’mj &, =1-107, - @
H, 2
The condition for the existence of non-trivial solution of the system of equations (14)-(16) provides us
Ve+AV*+BV?+C =0, (17)

AI BI C!
where A=— ,B=—,C=—,

F F F

F=aaa,0’ -23,3,0° -3,a;aa,0",
A = alaGTTOa)G +(1a853,7,9 + laeaioan)a)s —(aya,7, + 31311)6‘)4
—(12,8,8,7 0 + 13,8108, — 18898y, F7” + 18585858, )0° — 8,3:8,0°
B’ = 18,8,y7700" — (877 +858,8,7,0)@° — (18,8,Tr( + 188,75 + 1818, ) @°
—(B847r — 8,8,897,,0)©" —18,8,8,7,,®",
C' = ,8,,7,00° + (1858, By — 18y Tr ) 0.
V1,2,3 are the speeds of propagation of three coupled dilatational waves namely longitudinal displacement wave ( P,
), thermal wave ( P,) and longitudinal void volume fraction wave ( P, ). It can be easily observed that speeds of all

the coupled longitudinal waves are influenced by three phase lags (7, ,7,and z; ), viscosity and void parameters.

Eqg. (9) corresponds to the uncoupled transverse displacement wave (SV) whose velocity is given by

V4: M. (18)
\ &

Clearly, V, depends on the viscous parameters and magnetic field but is independent of thermal, void parameters

and phase lags.
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The field equations for thermo-viscoelastic medium M’ for two-dimensional wave propagation in xz-plane are
given by

2.1 i ’
p,a_u (ﬂ,*' n ,U*, )a_e n lu*lvzu, _ 7/*! 8& ’ (19)
OX OX

atZ

o°wW ) '\ oe’ , , 00

' =17+ *)—+ VAW -y —— (20
P ot ( H o H 7/ pe , (20)

) 0 0 0 , 0 0° " ’
K 1+7 = |[+k'=|1+7 = ||V?@' =| 1+ =+ —3 ( 'cO + *Té"), 21
{ ( Tuatj at( TTatj:| ( P 28{}'09 7 o (21)

where all the dashed quantities correspond to the medium M 'and are having similar meanings as defined for
medium M .

We will make use of following non-dimensional variables

@ '’
(x",z") = ?(X', '), (t", Ol T B T » 7/") =o't a5, 0, 7,,7,,71,7)
1
la—)rclr @/ —/2
u”,w’ s u,w), @ =—, ¢ 0, )=
( ) %;To ( ) TO ¢ ¢ ( O % zz) ye,-l-o

( O-;x ’ O-;z ! (2 2)

Displacement vector components U’ and W' in terms of potentials l,ul’ and W; are given by

u’:a_‘/jl,_a_l//;, W,:a_l//l,+8_l//£.
ox oz 0z OX  (23)

Now in terms of dimensionless quantities given in (22), the equations (19)-(21) after inserting the potentials ;//1’ and

y/; along with some simplifications take the form (after dropping single primes)

1+a{§th v, =7 88tw2 (24)

A 0 , 0 N B 0 ,
_ﬂe(1+ 6J+2(1+alaﬂvzl//l—ylz at21_£1+7 atj712® 0, (25)

12 2
al [1+ 7 §j+§(l+ izt %ﬂvzg = {l+ §+%;—J(®’ +a(l+y —)Vzwl)

(26)

where, all the unknowns ;/1', a; and aé are having similar expressions as defined for medium M with appropriate

dashes.
Now, assuming the solution of the form:

r !

(vl w3, 0(x 2, t)=[ 7, 7,0 |exp{ik; (xsin @’ —zcos ') — 't} @7)

where K, is the wave number and @' is angular frequency connected by the relation @' =KgV', V'being the

phase velocity. Barred quantities are the amplitudes of the field quantities.

IJRTS Journal of Research | 2347-6117 | Volume 22 | Issue 01 | Version 1.2 | Jan-Jun 2022



152|Page

Injecting the solutions (27) into equations (25) and (26), we get respectively
(20" + 1008, )7, + (N 7y )8 =0, (29

12 1

3 — 2 0
and 100" B aa,y; + (017 + 100’877, +V "0, )© =0, (29)
where, the unknown quantities ¢y, @y, Boos Tho» Tros &7+ 8g, &1, 8y, are having similar expressions as defined for

the medium M with appropriate dashes.
The condition for existence of non-trivial solution of above two equations (28) and (29), provides us following
quadratic equation in V 2

(\/'2)2+A’V'2+B':O : (30)

Al" B'” m 1 ! ! ! 1 ! ! 1 1 ! ’
where, A':F B':F, A" = 10" ()], + 7"*ayrl,) + @'y (rr, + 8ga0, Bl

] )
" ro_r 15 Il ! 14 i 12 _ 1241
B" =1a,,77,0" —a;8,,7,00", F'=y"0"a;.
Equation (30) is quadratic in V"%, which implies that there shall be two dilatational waves travelling with different

velocities V1, given by

,  —A+A? 4B’
Vi E > . (31)

Equation (24) corresponds to the uncoupled transverse displacement wave (SV) whose velocity V4' is obtained by

using plane wave solution (27) in equation (24) and is given by

V, g D (32)
Ve

3. Reflection and transmission phenomena

We shall consider the following two cases of incidence of a set of coupled longitudinal waves and a

transverse wave at the interface Z=0.

IJRTS Journal of Research | 2347-6117 | Volume 22 | Issue 01 | Version 1.2 | Jan-Jun 2022



Page |153

SV(B',, 6%)

Thermo-viscoelastic

half-space M' P\(4',6")

P'Z(A'ZV 0'2)

(4,, 8,) or (B, 0,)
Magneto-thermo-viscoelastic
half-space with voids M

P\(4,, 0,

SV(B,, 6,)

Fig. 1 Geometry of the problem (for incident Pi wave , 0=6i (i=1,2,3))

Incidence of a coupled longitudinal wave

We assume that a set of coupled longitudinal waves of amplitude A, propagating with the phase velocity

V, becomes incident obliquely at the interface, making an angle &, with the normal. In order to satisfy the

boundary conditions, we postulate that this incident wave gives rise to:
(1) Reflected waves in the half-space M :

(@) Three sets of coupled longitudinal waves with amplitudes A, A, and A,
propagating with speeds V1,2,3 and making angles 91'2'3 respectively with the normal.

(b) A transverse wave of amplitude B, propagating with speed V, making an

angle 6, with the normal.
(2) Refracted waves in the half-space M :

@ Two sets of coupled longitudinal waves with amplitudes Al' and AZ’ propagating with speeds
Vlfz and making angles 6’1’,2 respectively with the normal.

(b) A transverse wave of amplitude Bl' propagating with speed V4' making an angle 6’; with the

normal.
In the lower medium M , full structure of the wave field consisting of the incident and reflected waves can be

written as:
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w, = Ayexp{ik,(xsin 6, —zcos §,) — 1wt}

3
+> A exp{ik(xsing +zcos6) -t} ,  (33)

i=1

© =1,A, exp{ik, (xsin 6, — zcos 6,) — it}

3
+> m A exp{ik (xsing, +zcos6) -t} (34)

i=1

¢ =g A exp{ik (xsing, —zcos6,) — it}
3

+>_ A exp{ik (xsing +zcosd) -t} (35)
i=1

w, = B exp{ik,(xsin 6, + zcosb,) —iw,t}. (36)

Similarly, the full structure of the wave field of transmitted waves in medium M’ may be written as

v, = Alexp{ik/(xsin§ —zcosd)) — it}
+A, exp{ik;(xsin &, —zcos 6;) — it} , (37)
©' =1, A exp{k/(xsin g —zcos &) — 1wt}
+17,A, exp{ik, (xsin 6; —zcos ;) st} ,  (38)
v, = Blexp{ik,(xsin g, —zcosb,) —w;t}, (39)
where 77.,¢; (1 =1,2,3) are the coupling parameters between ® and ¥, ¢ and W, respectively. | (i =1,2)

are the coupling parameters between ®" and l//l' . Their expressions are given by

< (a2,0° —2,8,0°" )V, + (18;3,,0° —8,0" —18,8,,0° —8,3,0°)V;* ~18,,0°

Ui ‘ (40)
(CAARTAAY
¢ = (_aiasa)2 )Vi4 +10° (a3ﬂ00712 _asaio)vi2 (41)
I (CNARRAAY ’
' _[(71'250,2)\/;2 + lwlsaioj “2)
i la);virzyleﬁ(;O !

2 3 2 3 2
where 0, =108, [y, —10° 8y +885, G, =10 By, -
The amplitudes A ,;, A/,, B, and B, can be determined from the boundary conditions at the interface Z = 0. At

the intersection of two distinct solid half-spaces, the following boundary conditions should be present: (i) continuity
of force and stress components; (ii) continuity of displacement components; (iii) continuity of temperature; (iv)
continuity of the normal heat flux component; and (v) absence of variation in the volume fraction field with

distance. These boundary conditions are expressed mathematically as

c,=0,, 0,=0,, U=U", w=wW, @=0,

77! X!
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ka(1+rT 6J+K*a(l+ruﬁj o k'a(l+r{ aj+K*'6(1+r;aj ©
ot ot ot ot)joz | ot ot ot ot)| oz

—=0 at 2=0. (43)

The non-dimensional form of first four boundary conditions in terms of potentials y/, , and y, can be written as

0 0)\0(oy, oy
S| 1+ a,— | |V, +25,| 1+ —Tlgr "2 IH
7{£2( %atD & ( al&tj&(az 6xj b
0 0 0\ 0 (0w, Oy,
~1+y= |0 |=y| 6| 1+ o) = |V +25;| 1+ —1l4 T2
( 78J } y{z( a"atj v ( alatjaz(az ax]
0
—1+y'— |@" |, 44
( VaJ } (44)

2 2
2 53(1+a12j 291, OV, _
ot oxoz  OX°

o\, 3, v
=yl o l+a,— || 2 45
7{ 3( +al@t)[ e B H b |

2 (8%_81//2) 2 (6!//1 8%) o
pac \ ox oz p'a'c oz
723 (al//1+al//2j Ve (al/ll al/’z) @7)
pac, \ 0z OX p'a'c
’ ' b 2
where 52=Le2, 0y = ﬂez,&;: /,16,2, O /,19’2 5 ciz :
PC PC; P P’ Velo®

Relation among the wave numbers k;, Kjand angles &,,; for i=1,2,3,4, j=1,2,4 is given by Snell’s law
as below

k,sing, =k,sin6, =k,sing, =k, sing, =k/sing =k;sin&, =k; sing,. (48)
Now, substituting the values of potentials 1,1/1'2,(9,¢, 1//1"2 and ®" from (33)-(39) into the above boundary

conditions, assuming that all frequencies are same at the interface and making use of expression (48), we can obtain
the following system of simultaneous equations

> AZ =C, (i,j=1,2,3,4,56,7), (49
s omi |k

where A =7, 312_54+a1300829j+b1k_;+a14k_i k_Jz’
i i 1
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k2 . K. k
A= 7ea138|n2 ka A3j:a1813|n6’jk—’, A, :aigzcosej—‘
1

K. k
Ai=n A :zalgcosejnjk—‘, A=, cos@jk—J

1

2
A, =y.a,sin 6, coso, :‘; A24=—%a137/e c05294k—‘;,
1

1

2

(1=123),

Ay, =18, C0S G, 5

K; k
.k,
A44:la185|m94k_’ Ay=0, A,=0, A,=0,
1
’7 k12 2
’ 4 ’ 3 ' ’ j—4
A, =—7.| ag+a,cos’ 0, +ay, ka k2 . A =—7,sing_,cosd_, e
1
/ k; / kj ' ’ ; 4
A =18ind; , . A,; =1C0s0, ,— . A =-1 4 A =1C0S0; 17, —— .
1 1 1
A;=0 for (j=5,6),
1 H ' /k4'12 VkL;Z ;k4
A7 =7.8,58IN 0, COs O, — kz . Ay = ]/eamCOSZ@ kz ; A37=_1C03194k—,
,k
A, ==sing,—=, A,=0, A,=0, A,=0,
K,
&y, =106,0y,, 83 =2100,04,, 8y, =10fy, 85 =106,0y, 8, =205,
YL O'C [k (- 107]) + K7 (1-1007))] L—1007,)

; =10f,, ) 3 ’
P 2=, 2 Frok(im0m) +K (- 1wr,)] (—0r))

_Auv C2:A21' Csz_Azll C4=A41’ C5=_A51’ CGZAﬁl' C7:_A71’
Z:ﬁ Z:A2 Z:A3 Z4:B 25:A1 ZZA2 Z:E

b
Ve —
Here, Z, , ,, are the reflection coefficients, while Z; ¢, are the refraction coefficients for the incidence of a set of
coupled dilatational wave travelling with speed V; .
4. Numerical results and discussion
We have taken into account an example where magnesium crystal material is treated as an isotropic thermo-

viscoelastic solid for computations of amplitude ratios of various reflected and transmitted waves in order to analyze

this subject in more detail. Thus for the half-space M , we have
A, =2.17x10°Nm?, . =3.278x10°°Nm~?, y, = 2.68x10°Nm~ degree ™, T, = 298K,
k =1.7x10°Wm™ degree ™, ¢, =1.04x10° JKg " degree ™, p =1.74x10°Kgm™

For the half-space, M " :
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Al =2.12x10°Nm?, g/ =3.17x10°Nm~?, ! =1.07x10°Nm~ degree * , T, = 298K,
k' =1.14x10°Wm ™" degree™, ¢/ = 0.5977x10° JKg " degree ", p' =3.8x10°Kgm™.
Void parameters are given by
a=3.688x10° N, & =1.475x10° Nm?, y=1.753x10"m’,
b=1.13849x10" Nm™?, m=2x10° Nm~degree™.
Other constants involved in the problem are taken as:
7, =71, =0.1, T, = z'(; =0.2, 77 =71 =0.15, ¢, =) =0.06, o, = o/ =0.09,
w =45.
We assessed the reflection/refraction coefficients in light of the aforementioned physical information. All of the
amplitude ratios are discovered to have complex values, as was anticipated beforehand. Comparisons of the
reflection/refraction coefficients have been done within the context of thermo-viscoelastic theory based on:
(1 Three-phase-lag model with voids (3PLV) shown by solid line,

(i) GN-I1I model with voids (GN3V) shown by dashed line,
(iii) Three-phase-lag model without voids (3PLWV) shown by dotted line.

Figures 2-8 are meant for the case of incidence of a P-wave propagating with speed V, . Considered range for angle

of incidence is 0" <, <90°. The modulus values of the reflection coefficients are presented in figure 2 as a

function of the angle of incidence. It is evident that, with the exception of the 3PLWV model, has value nearly equal
to unity over the entire incidence range. The numerical values for the 3PLV and GN3V models differ little, as shown

in Figure, illuminating the fact that the three phase lag factors have only a minor influence on this reflection

coefficient. Moreover, presence of voids increases the values of |Zl| in the entire range of angle of incidence.
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Fig. 2 Variation of the modulus of reflection coefficient Z1 with angle of incidence of coupled longitudinal

wave with speed V1
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We compared the fluctuations in the modulus values of the reflection coefficient in figure 3. Modulus

values begin with a maximum value close to normal incidence, then decline with increasing incidence angle, finally

becoming zero close to grazing incidence. As illustrated, variations in reflection coefficient |Zz| follow same trend
for all the three models. Clearly, Z, is significantly affected due to void parameters and relaxation times. Presence

of voids and three phase lag parameters is responsible for decrement in the values of |ZZ| .
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Fig. 3 Variation of the modulus of reflection coefficient Z> with angle of incidence of coupled longitudinal

wave with speed V1
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Fig. 4 Variation of the modulus of reflection coefficient Zs with angle of incidence of coupled longitudinal

wave with speed V1

IJRTS Journal of Research | 2347-6117 | Volume 22 | Issue 01 | Version 1.2 | Jan-Jun 2022



Page |159

Figure 4 is depicting a comparison of the profile of reflection coefficient |Z3| with increasing angle of
incidence. Magnitude of Z, is very small for both the cases during the whole range of incidence. Pattern of

variations for both the models 3PLV and GN3V is similar. Clearly, presence of three relaxation times 7., 7, and

q ’
7, decreases the modulus values of Z,.
Figure 5 is characterizing the behaviour of modulus values of Z,as a function of angle of incidence. The

variations in Z, is alike for all the models with different degrees of magnitude. Magnitude of Z, increases from

zero value at 1" angle of incidence, attains maximum value at 6, =45, then decreases with further increase in
angle of incidence and ultimately vanishes at grazing incidence. It is noticed from the plot that magnitude of

reflection coefficient Z, gets suppressed due to the absence of porosity and presence of phase lag parameters in the

medium.
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Fig. 5 Variation of the modulus of reflection coefficient Zs with angle of incidence of coupled longitudinal
wave with speed V1
The solution curves for the magnitude of amplitude ratio |Z5| obtained for the refracted wave with speed
V" are portrayed through figure 6. Variations in |Z5| are similar to that for Z, and Z,. It can be inferred from the

figure that presence of porosity in the medium acts as a decreasing agent for |Z5| . It is also worth noticing here that
magnitude of Z. is high for GN3V model as compared to 3PLV model entailing that absence of phase lag

parameters acts as an increasing agent for |ZS| :
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Fig. 6 Variation of the modulus of refraction coefficient Zs with angle of incidence of coupled longitudinal

wave with speed V1

To observe the effects of voids and relaxation times 7, 7, and 7; on the modulus values of amplitude

1%
ratio Z, for the refracted wave having speed VZ', we refer to figure 7. The refraction coefficient |Z6| begins with
its maximum value at 1° angle of incidence and afterwards it behaves as a monotonically decreasing function during
the whole range of incidence. It vanishes near 90° angle of incidence. Consideration of voids in the medium

magnifies the modulus values of Z, while phase lag parameters are found to decrease the values of |Z6| .
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Fig. 7 Variation of the modulus of refraction coefficient Zs with angle of incidence of coupled longitudinal

wave with speed V1
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Fig. 8 Variation of the modulus of refraction coefficient Z7 with angle of incidence of coupled longitudinal

wave with speed V1

Figure 8 is devoted to analyse the variations in the modulus values of amplitude ratio Z, corresponding to
refracted transverse wave moving with speed V4'. Its trend of variations resembles Z, . Presence of void parameters

and phase lag parameters causes a decrement in the values of |Z7| .

5. Concluding remarks

1. The phase speeds of all the existing waves are found to be complex valued and frequency dependent.
2. Atgrazing incidence (€ =90") of longitudinal wave of speed V., no other reflected/refracted wave appears
except the longitudinal wave of the same amplitude as that of incident wave. Thus no reflection/refraction

takes place at grazing incidence.

3. Voids and three phase lag parameters are having a significant effect on reflection/refraction coefficients.
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