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Abstract 

In this paper, we have analyzed the reflection and 

refraction phenomena due to an incident coupled 

dilatational wave striking obliquely at the plane 

interface between a thermo-viscoelastic half space and 

a thermo-viscoelastic half-space with voids. Amplitude 

ratios of different reflected and refracted (or 

transmitted) waves have been provided in closed form 

for incidence of a set of coupled dilatational waves and 

basic governing equations are formulated in the 

framework of the three-phase-lag thermoelasticity 

theory. For a magnesium crystal material, expressions 

for reflection/refraction coefficients are computed. 

Through a variety of graphs, variations in the modulus 

values of the reflection/refraction coefficients have 

been shown as functions of the angle of incidence of 

the striking wave. These graphical representations 

highlight the effects of phase lag parameters and voids 

on the amplitude ratios of different reflected/refracted 

waves. 
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Nomenclature 

 ij                                     Components of stress tensor 

, e e       Lame’s constants 

0 1,                              Viscoelastic relaxation times 

e  ( )3 2e e t  +
  
  

t                    Coefficient of linear thermal expansion 

ec                                   Specific heat at constant strain 

K                                                 Thermal conductivity 

K 
                           

( 2 )

4

e e ec  +
, material constant                    

T  Absolute temperature 

0T                                                Reference temperature 

                Temperature 

deviation from the reference temperature 

                                               0

0

, 1T T
T


 = − =  

iu                           Components of displacement vector 

                                                Density of the medium 

ije                                       Components of strain tensor 

kke     e, cubical dilatation 

                                   Change in volume fraction field 

 ij                                            Kronecker delta function 

                       Components of equilibrated stress vector      

                                      Components of heat flux vector 

1, ,b                                    Void material parameters 

m                                             Thermo-void coefficient 

                                                      Equilibrated inertia 

t             Time variable
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1.   Introduction 

 According to the traditional thermoelasticity concept, when an elastic material is exposed to a thermal 

disturbance, the effect is immediately felt at a location far from the source. This demonstrates that thermal signal 

vibrates at an infinitely fast rate, which is an impractical conclusion. Lord and Shulman [1] developed a generalized 

thermoelasticity theory with one relaxation time (single-phase-lag theory) to address this important problem. By 

including temperature-rate among the constitutive relations (thus creating temperature-rate-dependent 

thermoelasticity), Green and Lindsay [2] proposed a significant theory of generalized thermoelasticity with two 

relaxation times. Additionally, Tzou [3] and Chandrasekharaiah [4] offered a dual-phase-lag (DPL) heat conduction 

model to include the impact of microscopic interactions in the fast-transient process of heat transfer mechanism in a 

macroscopic formulation. According to this model, the classical Fourier’s law iq K= −   has been replaced by 

 
( ) ( ), ,i i q i Tq x t K x t + = −  + ,  

where the heat flux iq  generated at position ix  at time qt +  is the result of the temperature gradient developed at 

another time Tt +  across a solid. The delay time T  emphasizes the micro-structural interactions. The other delay 

time q  highlights the fast-transient influences of thermal inertia. Abo-Dahab et al. [5] examined the effects of 

gravitational field and rotation on an electro-magneto-elastic material with diffusion and voids using the dual-phase-

lag model of generalized thermoelasticity. In accordance with three different generalized thermoelasticity theories, 

Mondal and Othman [6] investigated the effects of memory dependent derivative on piezo-thermoelastic material 

using the normal mode approach. 

 A continuum body with voids is one that has small pores distributed uniformly throughout its volume. The 

traditional theory of elasticity has been extended by Cowin and Nunziato's [7] idea of elastic material with voids. 

According to this idea, the voids that exist in the medium are empty pores that have some surface area and volume. 

The bulk density of the material is expressed as the product of the matrix density and the void volume fraction field, 

according to the linear theory of elastic material with voids. According to the idea, the variation in the void volume 

fraction counts as a separate extra kinematic variable. Corresponding to this new kinematic variable, a force termed 

as ‘equilibrated stress’ is introduced, which denotes the resultant force in the matrix acting on a void as a result of its 

interaction with neighbouring voids. Cowin and Nunziato [7] have obtained the constitutive relations and field 

equations for a homogeneous elastic material with voids using the concepts of continuum mechanics. Puri and 

Cowin [8] were the first to investigate the possibilities of plane wave propagation in elastic material with voids and 

discovered that there might be three plane waves propagating at different rates.  

 The idea of thermoelastic solids with voids is a great generalization of the classical coupled thermoelastic 

model by Iesan [9]. In addition to introducing the condition for acceleration wave propagation in an isotropic, 

homogeneous thermoelastic solid with voids, he also supplied the fundamental governing equations. Furthermore, 

he stated that temperature factors and voids had little impact on the shear wave's vibration. Iesan's idea [9] has been 

the subject of numerous insightful research projects that have been examined by academics all around the world. A 

research on wave propagation in a homogeneous, isotropic generalized thermoelastic half-space with voids was 

published by Singh [10]. In order to tackle a two-dimensional problem of a micropolar porous circular plate with a 

three-phase-lag model under the umbrella of two temperature generalized thermoelasticity, Kumar et al. [11] applied 
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Laplace and Hankel transforms. A novel nonlocal theory of generalized thermoelastic materials with voids and 

fractional derivative heat transmission was presented by Bachher and Sarkar [12]. Mondal et al. [13] studied the 

propagation of plane waves in a nonlocal thermoelastic material with voids within the setting of dual-phase-lag 

(DPL) model of generalized thermoelasticity. A two-dimensional problem of thermo-mechanical interactions in a 

functionally graded elastic material with voids and gravity was examined by Gunghas et al. [14] using the LS 

theory. 

2.  Problem formulation  

 Consider a linear homogeneous, isotropic, magneto-thermo-viscoelastic solid half-space with voids (

: 0M z   ) and a thermo-viscoelastic half-space ( : 0M z −   ) in welded contact separated by 0z = . 

Rectangular cartesian co-ordinate system has been chosen with origin at the interface 0z = . The x-axis is taken 

along the interface between these half-spaces and positive z-axis is pointing vertically downwards into the medium

.M  For two-dimensional motion parallel to xz-plane the displacement vector  ( ( , , ))u u v w=
r

components, change 

in void volume fraction   and temperature   are   

 ( ) ( ), , , 0, , ,= = =u u x z t v w w x z t  , ( , , )x z t =  and ( , , )x z t =  . 

The dynamical equations for Medium M may be written as follows: 

The constitutive relation is 

 ( ), , ,ij ij k k i j j i ij iju u u b        = + + + −  .                                                      (1) 

The parameters 
* *,   and 

*  are defined as 

 
* * *

0 11 , 1 , 1e e e
t t t

        
       

= + = + = +     
       

 

where ( ) ( )0 13 2 , 3 2


        


= + = + t

e e e t e e

e

. 

The balance of linear momentum in the presence of body forces iF  may be written as  

       ,i ji ju =&& .                                                                                                       (2) 

Again, the volume fraction field   satisfies the following equation (Iesan [15]) 

       ( )2

1b u m     −  − +  =
r && .                                                                       (3) 

The heat equation corresponding to generalized thermoelasticity theory with three phase lags (Roychoudhuri [7]) is 

    ( )
2 2

* 2 *

0 02
1 1 1

2

q

T q eK K c T e mT
t t t t




     

         
+ + +   = + + + +                

&&&& && .     (4) 

Substituting (1) into (2), one can obtain 

            ( )
2

2

2

u e
u b

t x x x


          

= + +  − +
   

,                                 (5) 

            ( )
2

2

2

w e
w b

t z z z


          

= + +  − +
   

.                                (6) 
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For convenience, we will make use of the following non-dimensional quantities   

 ( ) ( )0 1 0 1

1

( , ) , , , , , , , , ( , , , , , , )q T q Tx z x z t t
c

 


                    = =  , 

            ( )
2

1

2

0 0 1

( , ) , , ,
e

c
u w u w

T T c

  
 




  =  = = , ( ) ( )

0

1
, ,zx zz zx zz

eT
   


  = ,           (7) 

where 

2

1
1

2
,e e ec c

c
K

  




+
= = are the characteristic frequency and longitudinal wave velocity in the 

medium respectively. 

For investigation of plane waves, the potentials 1( , , )x z t , 2 ( , , )x z t  are introduced. They are related to 

displacement components u and w by the relation 

            
1 2 1 2,

      
= − = +

   
u w

x z z x
 .                                                                    (8)           

Plugging the non-dimensional quantities and potentials into Eqs.(3)-(6) under two-dimensional formulation, one can 

get 

   

2
2 2

1 2 1 2
1 a

t t


 

 
+  = 

  
,    (9)      

           

2
2 21

0 1 1 1 22
1 2 1 1 0e

e

a a
t t t t

 
     



         
+ + +  − − + − =      

         
,          (10)                                                                                    

 ( )2 2

3 1 4 5 6 0a a a a    −  − + − =&& , (11) 

     

2 2
2

7 8 1 92
1 1 1 (1 )

2

q

T qa a a
t t t t t




     

            
+ + +   = + + + + +                     

&&&& && , (12) 

where 

2

1
1 ,

e

c
a




=  

4 2

0 01 1 1
2 3 4 52 2 2

0 1

, , ,e

e e

b T mTbc c
a a a a

T c

  

       
= = = = ,                      

            

22 4

01 1
6 7 8 9 3

, , ,e Tc mcK
a a a a

K K K

 

   



= = = =  . 

Eq. (9) is uncoupled while equations (10)-(12) are coupled in 1 ,   and  . 

To suit the actual situation of the problem, we seek solutions of differential equations (9)-(12) in the following 

forms:  

             ( )1 2 1 2, , , , , , , , exp{ ( sin cos ) }x z t k x z t           =  − −  ,            (13) 
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where k is the wave number and   is angular frequency connected by the relation kV = , V being the phase 

velocity and (sin , cos ) − denotes the projection of wave normal of incident wave onto the xz-plane. Barred 

quantities are the amplitudes of the field quantities. 

Injecting Eq.(13) into Eqs.(10)-(12), we get respectively 

 ( )2 2 2

1 10 1 2

3 2 2

00( 0)a Va V a V    + + + = , (14) 

 
2 2 2 2 2 2

3 1 5 6 4( ) 0a a V a V a V    + + − − = , (15) 

and 
3 2 2 2

00 8 11 1 0 7 0 11 9 11( ) 0Ta a a V a a a V       + + + + = , (16) 

where 
00 0 




= + ,   

10 1 



= + ,    

00





= + , 

            
0  




= + ,    

0T T 



= + , 

           
00 10

10

2e e

e

a
   



 +
=  
 

,  

2 2

11
2

1
q

qa
 

 −= − . 

The condition for the existence of non-trivial solution of the system of equations (14)-(16) provides us 

            
6 4 2 0V AV BV C+ + + = ,                                                                                    (17) 

where  , ,
A B C

A B C
F F F

  
= = = , 

            
4 2 2

1 6 11 1 4 11 1 5 9 11F a a a a a a a a a a  = − − , 

            
5 4

1 6 7 0 6 10 11 1 4 0 1

6

1 116 0 )( ( )TT a a a a a a aA aa aa a      = + + − +  

                   
2 3 2

1 4 7 0 4 10 11 3 9 11 00 5 9 10 11 2 3 11( )a a a a a a a a a a a a a a a a        − + − + −  , 

            
7 6 5

6 10 0 1 0 6 7 10 0 4 10 0 1 7 0 10 11( ) ( )T T Ta a a a a a a a a aB a a            − + − + +=  

                   
3

2 3 7 0

4

2 3 0 4 7 10 0( )Ta a a a aa a a     − − − , 

            
3

8

6

7 10 0 11 00 10 0 )( Ta a aC a a        = + − . 

1,2,3V  are the speeds of propagation of three coupled dilatational waves namely longitudinal displacement wave ( 1P

), thermal wave ( 2P ) and longitudinal void volume fraction wave ( 3P ). It can be easily observed that speeds of all 

the coupled longitudinal waves are influenced by three phase lags ( q ,  and T ), viscosity and void parameters. 

Eq. (9) corresponds to the uncoupled transverse displacement wave (SV) whose velocity is given by 

            
1

4

1

0V
a

−
= .                                                                                                     (18)     

Clearly, 4V  depends on the viscous parameters and magnetic field but is independent of thermal, void parameters 

and phase lags. 
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The field equations for thermo-viscoelastic medium M   for two-dimensional wave propagation in xz-plane are 

given by 

 ( )
2

2

2

u e
u

t x x
               = + +  −

  
, (19)  

 ( )
2

2

2

w e
w

t z z
               = + +  −

  
, (20) 

( )
2 2

2

02
1 1 1

2

q

T q eK k c T e
t t t t t




     

                   + + +   = + +  +                 

&& && , (21) 

where all the dashed quantities correspond to the medium M  and are having similar meanings as defined for 

medium M . 

We will make use of following non-dimensional variables  

 ( ) ( )0 1 0 1

1

( , ) , , , , , , , , ( , , , , , , )q T q Tx z x z t t
c

 


            


                  = =


 , 

 ( ) ( ) ( )
2

1

2

0 0 1 0

1
( , ) , , , , , ,zx zz zx zz

e e

c
u w u w

T T c T

   
     

 

    
          =  = = =

  
, (22) 

Displacement vector components u  and w  in terms of potentials 1   and 2   are given by 

1 2 1 2, .u w
x z z x

         
 = − = +

     (23) 

Now in terms of dimensionless quantities given in (22), the equations (19)-(21) after inserting the potentials 1   and 

2   along with some simplifications take the form (after dropping single primes) 

 

2
2 2 2

1 2 1 2
1

t t


  

 
  +  = 
  

, (24) 

 

2
2 2 21

0 1 1 1 12
1 2 1 1 0e

e t t t t

 
     



         
      + + +  − − +  =      

          
, (25) 

 

2 2
2 2

7 8 12
1 1 1 (1 ) ,

2

q

T qa a
t t t t t t




    

             
        + + +   = + +  + +                       

&& &&

 (26) 

where, all the unknowns 1  , 7a  and 8a  are having similar expressions as defined for medium M  with appropriate 

dashes.  

Now, assuming the solution of the form: 

 
 ( )1 2 1 2 0, , , , , , exp{ ( sin cos ) },x z t k x z t                 =  − −   (27) 

where 0k   is the wave number and   is angular frequency connected by the relation 0k V  = , V being the 

phase velocity. Barred quantities are the amplitudes of the field quantities. 
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Injecting the solutions (27) into equations (25) and (26), we get respectively 

 ( )2 2 2

10 1

3 2 2

00( ) 0VV a           + +  = , (28) 

and 
3 2 2

00 8 11 1 0 7 0 11( ) 0Ta a a V a                 + + +  = , (29) 

where, the unknown quantities 00 10 00 0 0 7 8 10 11, , , , , , , ,T a a a a              are having similar expressions as defined for 

the medium M with appropriate dashes.  

The condition for existence of non-trivial solution of above two equations (28) and (29), provides us following 

quadratic equation in 
2V   

 
2 2 2( ) 0V A V B   + + =  , (30) 

where, ,
A B

A B
F F

 
 = =

 
, 

3 2 4 2 2

10 11 7 0 0 8 11 00( ) ( )TA a a a a a                  = + + +  , 

 
5 4

10 0 7 10 0 ,Ta a aB           − =
  

2 2

11F a    = . 

Equation (30) is quadratic in 
2V  , which implies that there shall be two dilatational waves travelling with different 

velocities 
2

1,2V   given by 

 

2
2

1,2

4

2

A A B
V

  −  −
 = . (31) 

Equation (24) corresponds to the uncoupled transverse displacement wave (SV) whose velocity 4V   is obtained by 

using plane wave solution (27) in equation (24) and is given by 

 10
4 2

1

V




 −
 =


. (32)  

3. Reflection and transmission phenomena 

 We shall consider the following two cases of incidence of a set of coupled longitudinal waves and a 

transverse wave at the interface 0z = . 
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Fig. 1  Geometry of the problem (for incident Pi wave , θ0=θi  (i=1,2,3)) 

Incidence of a coupled longitudinal wave 

 We assume that a set of coupled longitudinal waves of amplitude 0A  propagating with the phase velocity 

1V  becomes incident obliquely at the interface, making an angle 0  with the normal. In order to satisfy the 

boundary conditions, we postulate that this incident wave gives rise to: 

(1)  Reflected waves in the half-space M : 

 (a) Three sets of coupled longitudinal waves with amplitudes 1A , 2A  and 3A   

 propagating with speeds 1,2,3V  and making angles 1,2,3  respectively with the normal.  

 (b) A transverse wave of amplitude 1B  propagating with speed 4V  making an  

 angle θ4 with the normal. 

(2)  Refracted waves in the half-space M  : 

 (a) Two sets of coupled longitudinal waves with amplitudes 1A  and 2A
 
propagating  with speeds 

1,2V   and making angles 1,2 respectively with the normal.  

 (b) A transverse wave of amplitude 1B  propagating with speed 4V   making an  angle 4   with the 

normal. 

In the lower medium M , full structure of the wave field consisting of the incident and reflected waves can be 

written as: 
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  1 0 1 0 0 1( sin coe sxp ) tA k x z    − −=  

  
3

1

( sin co )p sex i i i ii

i

k x z tA    
=

++ − , (33)  

 
 1 0 01 10 ( sin cop )ex skA x z t    − − =  

  
3

1

( sine p cos )xi i i i i

i

ik x z tA    
=

+ −+ , (34) 

  1 0 01 10 ( sin cop )ex skA x z t     −= −  

  
3

1

( sine p cos )xi i i i i

i

ik x z tA    
=

+ −+ , (35) 

  2 1 4 4 4 4( sin coe sxp ) tB k x z    + −= . (36) 

Similarly, the full structure of the wave field of transmitted waves in medium M  may be written as 

  1 11 1 11 ( sinex sp co )k x zA t       − − =
 

  
 2 2 22 2 ( sinex cos )p kA x z t      − −+ , (37) 

  1 1 1 1 11 ( sin coexp s )k x z tA        − −   =
 

  
 2 2 22 22 ( sinex sp co )k x zA t       − − + , (38) 

  4 42 4 41 ( sinex sp co )k x zB t       − − = , (39) 

where i , i ( 1, 2,3i = ) are the coupling parameters between   and 1 ,   and 1 respectively. i  ( 1, 2i = ) 

are the coupling parameters between   and 1  . Their expressions are given by 

 

5 4 3 2 2 5

6 10 1 4 10 2 3 10

4 2 4

1 6 1 4

4 2

1 2

( ) (

(

)

)

i
i

i i

ia a a aa a a a V

g V g

a

V

a a a V     


  − −−

+

−+ −
= , (40) 

 

3 2 2

3 00 1

2 4

1 5

4 2

1

10

2

5( ) (

(

)

)

ii
i

i i

a a a a Va V

g V g V

  


+

−− +
= , (41) 

 

2 2 2

1

3

10

2 2

1 00

( )
i

i

iV a

V



 








 

  

   + 


− 
= , (42)  

where  
2 3 2

4 00 1 6 00 1 51 2a a a ag      − +=  ,   02

3 2

0 1g   = .  

The amplitudes 1,2,3A , 1,2A , 1B  and 1B  can be determined from the boundary conditions at the interface 0z = . At 

the intersection of two distinct solid half-spaces, the following boundary conditions should be present: (i) continuity 

of force and stress components; (ii) continuity of displacement components; (iii) continuity of temperature; (iv) 

continuity of the normal heat flux component; and (v) absence of variation in the volume fraction field with 

distance. These boundary conditions are expressed mathematically as 

 zz zz  = ,  zx zx  = ,  u u= , w w= ,    =  ,  
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1 1 1 1

1 1

T T

q q

k K k K
t t t t z t t t t z

t t t t

    

 

                        + + + + + +                             =
      

+ +   
      

,   

 0
z


=


                                                at 0z = . (43) 

The non-dimensional form of first four boundary conditions in terms of potentials 1,2  and 1,2   can be written as 

 
2 1 2

2 0 1 3 1 11 2 1e b
t t z z x

 
      
           

+  + + + +       
          

 

  
2 1 2

2 0 1 3 11 1 2 1e
t t t z z x

 
      

              
     − +  = +  + + +                    

 

 1
t


  

 − +     
, (44) 

  

2 2 2

1 2 2
3 1 2 2

1 2e
t x z x z

  
  
     

+ + −   
       

 

 

2 2 2

1 2 2
3 1 2 2

1 2e
t x z x z

  
  
       
  = + + −   

       
, (45) 

 1 2 1 2

1 1

e e

c x z c x z

    

  

        
− = −           

, (46) 

 1 2 1 2

1 1

e e

c z x c z x

    

  

        
+ = +           

, (47) 

where  
2 2

1

e

c





= ,  

3 2

1

e

c





= , 

2 2

1

e

c







 =

 
,  

3 2

1

e

c







 =

 
 , 

2

1
1 2

0e

bc
b

T  
= .   

Relation among the wave numbers ,i jk k  and angles ,i j   for 1,2,3,4, 1,2,4i j= =   is  given by Snell’s law 

as below 

 1 1 2 2 3 3 4 4 1 1 2 2 4 4sin sin sin sin sin sin sin .k k k k k k k           = = = = = =
 

(48) 

Now, substituting the values of potentials 1,2 , ,  , 1,2  and   from (33)-(39) into the above boundary 

conditions, assuming that all frequencies are same at the interface and making use of expression (48), we can obtain 

the following system of simultaneous equations  

 ij j iA Z C= ,           ( , 1, 2,3, 4,5,6,7)i j = , (49) 

where  

2

2

1 12 4 13 1 142 2 2

1

cos
j j j

j e j

j j

k
A a a b a

k k k

 
  
 

= − + + + 
  

, 
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1
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4
14 13 4 4 2

1
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k
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4
24 13 4 2

1

1
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34 18 4

1
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k

A a
k
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44 18 4

1
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k

A a
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4
27 16 4 2

1

1
cos 2

2
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1
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A
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

= − , 

 4
47 4

1
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k

A
k

 


= − ,   57 0A = ,   67 0A = ,   77 0A = ,   

 212 00a  = ,   313 102a  = ,     014 0a = ,   215 00a   = ,   316 102a   = , 

 17 00a  = ,   1
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 

  
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qT

T q

k K
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k K




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
= . 

Here, 1,2,3,4Z  are the reflection coefficients, while 5,6,7Z  are the refraction coefficients for the incidence of a set of 

coupled dilatational wave travelling with speed V1 . 

4.   Numerical results and discussion 

             We have taken into account an example where magnesium crystal material is treated as an isotropic thermo-

viscoelastic solid for computations of amplitude ratios of various reflected and transmitted waves in order to analyze 

this subject in more detail. Thus for the half-space M , we have 

10 2 10 2 6 2 1

0

2 1 1 3 1 1 3 3

2.17 10 , 3.278 10 , 2.68 10 degree , 298 ,

1.7 10 degree , 1.04 10 degree , 1.74 10 .

e e e

e

Nm Nm Nm T K

k Wm c JKg Kgm

  



− − − −

− − − − −

=  =  =  =

=  =  = 
 

For the half-space, M  : 
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10 2 10 2 6 2 1
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2 1 1 3 1 1 3 3

2.12 10 , 3.17 10 , 1.07 10 degree , 298 ,

1.14 10 degree , 0.5977 10 degree , 3.8 10 .

e e e

e

Nm Nm Nm T K

k Wm c JKg Kgm
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− − − −

− − − − −

  =  =  =  =

  =  =  = 
 

Void parameters are given by
 

 

5 10 2 15 2

1

10 2 6 2 1

3.688 10 , 1.475 10 , 1.753 10 ,

1.13849 10 , 2 10 degree .

N Nm m

b Nm m Nm

  − − −

− − −

=  =  = 

=  =      

Other constants involved in the problem are taken as: 

 
0 0 1 10.1, 0.2, 0.15, 0.06, 0.09,

45.

q q T T          



    = = = = = = = = = =

=
 

We assessed the reflection/refraction coefficients in light of the aforementioned physical information. All of the 

amplitude ratios are discovered to have complex values, as was anticipated beforehand. Comparisons of the 

reflection/refraction coefficients have been done within the context of thermo-viscoelastic theory based on: 

 (i) Three-phase-lag model with voids (3PLV) shown by solid line, 

 (ii) GN-III model with voids (GN3V) shown by dashed line, 

 (iii) Three-phase-lag model without voids (3PLWV) shown by dotted line. 

Figures 2-8 are meant for the case of incidence of a P-wave propagating with speed 1V . Considered range for angle 

of incidence is 00 90 o o
. The modulus values of the reflection coefficients are presented in figure 2 as a 

function of the angle of incidence. It is evident that, with the exception of the 3PLWV model, has value nearly equal 

to unity over the entire incidence range. The numerical values for the 3PLV and GN3V models differ little, as shown 

in Figure, illuminating the fact that the three phase lag factors have only a minor influence on this reflection 

coefficient. Moreover, presence of voids increases the values of 1Z in the entire range of angle of incidence.  

 

Fig. 2  Variation of the modulus of reflection coefficient Z1 with angle of incidence of coupled longitudinal 

wave with speed V1 

0 10 20 30 40 50 60 70 80 90
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Angle of incidence (in degrees)

R
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t 
Z

1

 

 

3PLV

GN3V

3PLWV



158 | P a g e  

 

 IJRTS Journal of Research | 2347-6117 | Volume 22 | Issue 01 | Version 1.2 | Jan-Jun 2022   

 We compared the fluctuations in the modulus values of the reflection coefficient in figure 3. Modulus 

values begin with a maximum value close to normal incidence, then decline with increasing incidence angle, finally 

becoming zero close to grazing incidence. As illustrated, variations in reflection coefficient 2Z  follow same trend 

for all the three models. Clearly, 2Z  is significantly affected due to void parameters and relaxation times. Presence 

of voids and three phase lag parameters is responsible for decrement in the values of 2Z . 

 

Fig. 3  Variation of the modulus of reflection coefficient Z2 with angle of incidence of coupled longitudinal 

wave with speed V1 

 

Fig. 4  Variation of the modulus of reflection coefficient Z3 with angle of incidence of coupled longitudinal 

wave with speed V1 
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 Figure 4 is depicting a comparison of the profile of reflection coefficient 3Z  with increasing angle of 

incidence. Magnitude of 3Z  is very small for both the cases during the whole range of incidence. Pattern of 

variations for both the models 3PLV and GN3V is similar. Clearly, presence of three relaxation times q ,   and 

T  decreases the modulus values of 3Z . 

 Figure 5 is characterizing the behaviour of modulus values of 4Z as a function of angle of incidence. The 

variations in 4Z  is alike for all the models with different degrees of magnitude. Magnitude of 4Z  increases from 

zero value at 1o
 angle of incidence, attains maximum value at 0 45 = o

, then decreases with further increase in 

angle of incidence and ultimately vanishes at grazing incidence. It is noticed from the plot that magnitude of 

reflection coefficient 4Z  gets suppressed due to the absence of porosity and presence of phase lag parameters in the 

medium.   

 

Fig. 5 Variation of the modulus of reflection coefficient Z4 with angle of incidence of coupled longitudinal 

wave with speed V1 

 The solution curves for the magnitude of amplitude ratio 5Z  obtained for the refracted wave with speed 

1V   are portrayed through figure 6. Variations in 5Z  are similar to that for 2Z  and 3Z . It can be inferred from the 

figure that presence of porosity in the medium acts as a decreasing agent for 5Z . It is also worth noticing here that 

magnitude of 5Z  is high for GN3V model as compared to 3PLV model entailing that absence of phase lag 

parameters acts as an increasing agent for 5Z .   
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Fig. 6  Variation of the modulus of refraction coefficient Z5 with angle of incidence of coupled longitudinal 

wave with speed V1 

 To observe the effects of voids and relaxation times q ,   and T  on the modulus values of amplitude 

ratio 6Z  for the refracted wave having speed 2V  , we refer to figure 7. The refraction coefficient 6Z  begins with 

its maximum value at 1
o
 angle of incidence and afterwards it behaves as a monotonically decreasing function during 

the whole range of incidence. It vanishes near 90o
 angle of incidence. Consideration of voids in the medium 

magnifies the modulus values of 6Z  while phase lag parameters are found to decrease the values of 6Z . 

 

Fig. 7  Variation of the modulus of refraction coefficient Z6 with angle of incidence of coupled longitudinal 

wave with speed V1 
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Fig. 8  Variation of the modulus of refraction coefficient Z7 with angle of incidence of coupled longitudinal 

wave with speed V1 

 Figure 8 is devoted to analyse the variations in the modulus values of amplitude ratio 7Z  corresponding to 

refracted transverse wave moving with speed 4V  . Its trend of variations resembles 4Z . Presence of void parameters 

and phase lag parameters causes a decrement in the values of 7Z . 

5. Concluding remarks 

1. The phase speeds of all the existing waves are found to be complex valued and frequency dependent.  

2. At grazing incidence ( 90 = o
) of longitudinal wave of speed 1V , no other reflected/refracted wave appears 

except the longitudinal wave of the same amplitude as that of incident wave. Thus no reflection/refraction 

takes place at grazing incidence. 

3. Voids and three phase lag parameters are having a significant effect on reflection/refraction coefficients.  
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