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Abstract 

The present research is pertained to study the dynamical interactions in a micropolar magneto-

thermoelastic medium under the effect of temperature dependent properties, laser pulse and 

initial stress. Three phase lag theory is employed for addressing the mathematical analysis. The 

analytical solution of the displacement components, temperature and stress components is 

obtained by applying the normal mode analysis technique. Some particular cases are also 

discussed in the context of the problem. The numerical evaluation of the field quantities is 

carried out for magnesium crystal like material in the physical domain. The effects of magnetic 

field and initial stress are observed on the physical quantities and depicted graphically. Some 

attempts have also been made to explore the three-dimensional responses of the thermoelastic 

medium. Numerical results predict finite speed of propagation for thermoelastic waves.  
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1 Introduction 

  The conventional thermoelastic theory is based on the usual Fourier’s law of heat 

conduction and hence acknowledging thermal signals propagating with infinite speed. Several 

alternative theories of heat conduction have been developed to overcome this physically 

unacceptable situation and all these theories are admitting wave-like thermal signals propagating 

with finite speed. The first theory was developed by Lord and Shulman (L-S) (1967), which 

involves the concept of thermal relaxation time into the usual Fourier’s law of heat conduction. 

The second among such modelings is the temperature rate dependent thermoelasticity theory 

known as Green and Lindsay (G-L) (1972) theory with two relaxation times, which modified the 

stress-strain relationship and the entropy relation that relates the stress and entropy to the 

temperature.  

 After that, providing sufficient basic modifications in governing equations, Green and 

Naghdi (1991, 1992, 1993) produced an alternative theory which was further divided into three 

different parts, referred to as GN theories of type I, III, II. A remarkable generalization of the 

coupled theory of thermoelasticity is referred to as dual phase lag thermoelasticity proposed by 

Tzou (1995) and Chandrasekharaiah (1998). Tzou (1995) introduced two phase lags, one for heat 

flux vector and the other for temperature gradient. Another generalization, known as three phase 

lag thermoelasticity, was developed by Roy Choudhuri (2007). In this generalization, the 

Fourier’s law of heat conduction is replaced by an approximation to a modification of the 

Fourier’s law with introduction of three different phase lags for the heat flux vector, the 

temperature gradient and thermal displacement gradient. The stability of the three-phase lag heat 

conduction equation and relation among the three phase lag parameters are discussed in detail by 

Quintanilla and Racke (2008). Othman et al. (2019) investigated the effects of gravity, two-

temperature parameter, fiber-reinforcement and time on the various thermo physical quantities in 

the purview of the three-phase-lag model.  

 During heating of a metal film by laser pulse, a thermoelastic wave is generated due to 

thermal expansion in the near surface region and propagates into the target. Several research 

works have been devoted to problems involving a laser pulse heat source due to the numerous 

applications in engineering, such as pulsed-laser cutting and welding, drilling, surface hardening, 

high speed machining etc. The coupled thermoelastic vibrations of a microscale beam resonator 

induced by laser pulse heating were studied by Sun et al. (2008). Othman and Tantawi (2016) 

employed normal mode technique to investigate the effect of gravitational field on a two-
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dimensional thermoelastic medium under the influence of laser pulse. Othman et al. (2020) used 

the normal mode analysis to study the effect of heat laser pulse on wave propagation in a 

generalized thermoelastic micropolar medium in the context of GN-III theory. Bayones et al. 

(2021) scrutinized the influence of gravity on the transient waves in a homogeneous, isotropic 

thermoelastic medium subjected to laser pulse. They adopted the normal mode technique to 

obtain the analytic expressions for displacement components, stresses and temperature. 

 Recent years have seen an ever growing interest in investigation of the problems related 

to initially stressed elastic medium. Such problems have numerous applications in various fields, 

such as earthquake engineering, seismology and geophysics. The earth is assumed to be under 

high initial stresses. The dynamic problem of an elastic medium under initial stress was solved 

by Biot (1965). The linear theory of thermoelasticity with hydrostatic initial stress for an 

isotropic medium was developed by Montanaro (1999). Othman and Song (2007) studied the 

reflection phenomenon of plane waves in the context of Green-Naghdi theory of Types II and III 

under hydrostatic initial stress. In the context of GN-III theory, Othman et al. (2015) scrutinized 

the impacts of rotation and time on an initially stressed thermoelastic medium with voids due to 

laser pulse. By adopting the normal mode method, they obtained the expressions of different 

field variables and represented them graphically. Lotfy (2021) established a novel mathematical 

model of the magneto-thermoelastic initially stressed medium in the context of the photothermal 

transport process. 

 The present paper is devoted to study the interactions in an initially stressed generalized 

micropolar magneto-thermoelastic medium with three phase lags, temperature dependent 

property and laser pulse, subjected to thermal load. Normal mode analysis is adopted to solve the 

governing equations. Analytical and numerical results for temperature, displacement and stress 

distributions have been obtained. Some comparisons have been shown in figures to estimate the 

effects of initial stress parameter and magnetic field. Some attempts have also been made to 

explore the three-dimensional responses of the thermoelastic medium. 

2 Governing equations 

 In accordance with Roy Choudhuri (2007), Aouadi (2006) and Montanaro (1999), the 

constitutive relations and field equations for a homogeneous isotropic micropolar magneto-

thermoelastic medium with laser pulse and initial stress in the presence of body force are given 

as: 

(i) Constitutive relations: 

 ( ) ( )1 ,2ij ij ij ij ij ij j i ijr rp e e K u         = − + + + −  + − , (1) 
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 ( ) ( ), , , ,

1 1
,  

2 2
ij i j j i ij j i i je u u u u= + = − , (2) 

 , , ,ij r r ij i j j im    = + + , (3) 

where  p is the initial pressure, ij  are the components of rotation tensor, 

( )1 3 2 ,K      = + +  is the coefficient of linear thermal expansion, 
i  are the components of 

microrotation vector, ijr  is the permutation tensor, ijm  are the components of couple stress 

tensor, ,  ,      and K are micropolar material constants. 

(ii) Equation of motion: 

 ,ji j i iF u + = && , (4) 

 ,ik i kij ij km j   + = && , (5) 

where j  is the microinertia and 
iF  are the components of the Lorentz force induced by the 

magnetic field, given as 

 ( )0i
i

F J H= 
r r

. (6) 

 The linearized equations of electrodynamics of slowly moving medium (Maxwell’s 

electro-magnetic field equations) are: 

 ( )0 0,  ,  J h E E h h u H =  −  = − = 
r r rr r r rr&&

, 

 ( )0 ,  div 0,  div 0E u H h E= −  = =
rr r rr& , (7) 

where J
r

 is the current density vector, 
0  is the magnetic permeability, 

0  is electric 

permittivity, E
r

 is an induced electric vector field, H
r

 is applied magnetic field and h
r

 is an 

induced magnetic field. 

(iii) Heat conduction equation: 

 
* * 2

1 1 1v TK K
t t t

 
       

+ + +            
  

  ( )
2 2

1 02
1

2

q

q EC T e Q
t t


  

  
= + + + −    

&&& && , (8) 

where 
*K  is thermal conductivity, 

( )*

1

2

4

EC
K

 +
=  is material constant characteristic of the 

theory, 
T  is phase lag for the temperature gradient, q  is phase lag for heat flux, 

v  is phase lag 
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for the thermal displacement gradient and Q is the heat source. A comma followed by suffix 

denotes material derivative and a superposed dot denotes the derivative with respect to time t. 

The inequality among the three different phase lags to be satisfied is 0 v T q     .  

 Moreover, our aim is to investigate the influence of temperature dependence of elastic 

and thermal moduli. Therefore, we may assume that 

 ( ) ( ) ( )1 1 0, , , , , , , , , , , ,K K f T                 = , (9) 

where ,  ,  ,  ,  ,  K           and 1   are constants and ( )0f T  is a given non-dimensional 

function of reference temperature such that ( ) *

0 01f T T= − , where 
*  is an empirical material 

constant. In case of temperature independent properties, we have ( )0 1f T = . 

3 Formulation of the problem 

 We consider a homogeneous, isotropic, micropolar magneto-thermoelastic medium with 

laser pulse heat source, initial stress and temperature dependent properties. Origin of the 

cartesian co-ordinate system ( ), ,x y z  is taken at any point on the plane surface and the z-axis 

points vertically downwards into the considered medium which is represented by z ≥ 0 (Figure 

1). Orientation of the primary magnetic field ( )00, ,0H H=
r

 is towards the positive direction of 

y-axis. Due to application of this magnetic field, there arises in the medium an induced magnetic 

field h
r

 and an induced electric field E
r

. We assume that both andh E
r r

 are small in magnitude in 

accordance with the assumptions of the linear theory of thermoelasticity. The xz-plane is chosen 

to confine the deformation and propagation of disturbance. The half space is heated uniformly by 

laser pulse with non Gaussian temporal profile, Sun et al. (2008). 

 

( ) 0

2
exp

p p

L t t
L t

t t

 
= −  

 
, (10) 

where pt  is the time duration of a laser pulse and 
0L  is the laser intensity, which is defined as the 

total energy carried by a laser pulse per unit cross section of the laser beam. In the present 

problem, we take 2pt ps= −  as the time duration. The thermal conduction in the beam can be 

modelled as a one-dimensional problem with energy source ( ),Q z t  as 

 ( ) ( )
/ 2

, expaR z h
Q z t L t

 

− 
=  

 
, (11) 
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where   is the absorption depth of the heating energy and 
aR  is the absorptivity of the irradiated 

surface. 

 

Figure 1: Geometry of the problem 

 For a two-dimensional problem in xz-plane, we can write the displacement vector and 

microrotation vector as 

 
( ) ( ) ( ) ( )2,0, , , , , 0, , , and 0, ,0u u w u u x z t v w w x z t  = = = = =

rr
. (12) 

The components of initial magnetic field vector H
r

 are 

 00, , 0x y zH H H H= = = . (13) 

 The induced electric intensity vector is normal to both the magnetic intensity and the 

displacement vectors. Thus, E
r

 have the components 

 1 3, 0,x y zE E E E E= = = . (14) 

The current density vector J
r

 must be parallel to the electric intensity vector E
r

, thus 

 1 3, 0,x y zJ J J J J= = = . (15) 

Expression (6) with the help of (7) and (12) - (15) takes the form 

 
2 2 2

2

0 0 0 02 2x

u w u
F H

x x z t
  

   
= + − 

    
, (16) 

 
2 2 2

2

0 0 0 02 2z

u w w
F H

x z z t
  

   
= + − 

    
. (17) 

 With the aid of expressions (2), (9) and (12), the stresses arising from Eqs. (1) and (3), 

take the form 
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 ( ) 1 02xx

u w
p K

x z
     

  
    = − + + + + −    

, (18) 

 ( ) 1 02zz

w u
p K

z x
     

  
    = − + + + + −    

, (19) 

 2 0

0 02 2
xz

p w p u
K K

x z
    

 

     
   = + − + + +    

     
, (20) 

 2 0

0 02 2
zx

p u p w
K K

z x
    

 

     
   = + − + + −    

     
, (21) 

 2
0xym

x


 


=


, (22) 

 2
0zym

z


 


=


, (23) 

where ( ) *

0 0 01f T T = = − . 

 With the help of expressions (9) - (12), (16) and (17), the equations of motion and heat 

conduction, defined in (4), (5) and (8), take the forms: 

 

( )
2 2 2

2 20 0
0 02

0 02

H u p w
K u H

x z x


     

 

     
     +  + + + + + + +    

     
  

  ( )
2 2

2 22
1 0 0 0 02 2

02

p u u
K H

z x z t


    



  
 − − − = +

   
, (24) 

 

( )
2 2 2

2 20 0
0 02

0 02

H w p u
K w H

z x z


     

 

     
     +  + + + + + + +    

     
 

  ( )
2 2

2 22
1 0 0 0 02 2

02

p w w
K H

x z x t


    



  
 − − + = +

   
, (25) 

 

2
2 2

2 2 0 2

0

 2
p u w

K K j
z x t


    



     
   + − − − =   

     
, (26) 

 

( )
2 2

* * 2

1 1 02
1 1 1

2

q

v T q EK K C T e
t t t t t


    

          
+ + +   = + + +                 

&& &&  

  

2 2

0

2 2

2 2
exp

2

p pa

p p

zt ht tR L t

t t t



 

  − −
−        

. (27) 
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 To eliminate the numerical difficulties in solution procedure, we introduce the following 

non-dimensional variables: 

 ( ) ( ) ( ) ( )
* 2*

1 1
2 2

1 1 0 1 0

ˆˆ ˆ ˆˆ, , ,  , , ,  
c c

x z x z u w u w
c T T

 
 

 
= = =

 
, 

 ( ) ( )
*

*

1 0 1 1 0

ˆ ˆˆ ˆ ˆ ˆ ˆ,  , , , , , , , , ,  
ij

ij p T q v p T q v ij ijt t t t m m
T c T

 
       

 
= = =

 
, 

 ( ) ( )
*

0 1 0 1

ˆˆˆ ˆ,  ,  , ,
p

p h h
T T c


 




 = = =


, (28) 

where 

 
2

* 21
1*

2
,EC c K
c

K

  




  + +
= = . 

Using Helmholtz decomposition, the displacement components can be written as 

 ( ), ,
y

q q
u w U

x z z x

 


   
= + = − = −
   

r
, (29) 

where ( ) ( ), , and , ,q x z t x z t  are scalar potential functions and ( ), ,U x z t
r

 is the vector potential 

function. 

 In view of above considerations (dimensionless parameters and potential functions) 

described in (28) and (29), Eqs. (18) - (27) along with some simplifications, assume the forms 

(after dropping the hat notation) 

 
11 12 0xx

u w
p a a

x z
 

 
= − + + − 

 
, (30) 

 
11 12 0zz

w u
p a a

z x
 

 
= − + + − 

 
, (31) 

 
13 14 15 2xz

w u
a a a

x z
 

 
= + +

 
, (32) 

 
13 14 15 2zx

u w
a a a

z x
 

 
= + −

 
, (33) 

 2
16xym a

x


=


, (34) 

 2
16zym a

z


=


, (35) 

 
2

2

17 182
0a q a

t

 
 − −  = 

 
, (36) 
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2

2

19 20 22
0a a

t
 

 
 − − = 

 
, (37) 

 
2

2 2

21 22 2 232
0a a a

t
 

 
 − − +  = 

 
, (38) 

 

2 2
* * * 2

1 2
1 1 1

2

q

v T qK K
t t t t t


   

          
+ + +   = + +                 

 

  ( )
2

2

24 25 262

2 2
1 exp

2

p p

p p

zt ht tt
a a q a

t t t





   − −
 +  − −          

, (39) 

where all the constants used are defined in Appendix 1. 

4 Solution of the problem 

 In this section, we employ the normal mode technique, which provides exact solutions 

without any assumed condition on the actual physical variables that originate in the governing 

equations of the considered problem. So, the solution of the physical variables under 

consideration can be decomposed in terms of normal modes in the following form: 

 ( )( ) ( )( ) ( )* * * * * * * *

2 , 2, , , , , , , , , , , , , , ,
t kx

ij ij ij iju w q m x z t u w q m z e
 

     
+

 =  , (40) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * * *

2, ,  ,  ,  ,  ,  ,  ij iju z w z q z z z z m z z    are the amplitudes of the 

functions,   is the angular frequency,   is an imaginary unit and k is the wave number in x-

direction. 

Using expression (40) in Eqs. (36) - (39), we get the following differential equations 

 ( ) ( ) ( )( )4 2 * *

1 2 2 , 0D A D A z z − + = , (41) 

 ( ) ( ) ( )( )4 2 * *

3 4 23

/ 2
, exp

p

z h t
D A D A q z z b t kx

t
 



 −
− +  = − − −  

 
, (42) 

where 
d

D
dz

= . Since the intent is that the solutions vanish at infinity so as to satisfy the 

regularity condition at infinity (which are assumed to be bounded as z → ), we can express 

2 , , q   and   in the following forms: 

 

 ( )   ( ) ( )
2

2 1

1

, , , 1, ,  i t kxz

i i

i

x z t H R k e e
   
+−

=

 
=  
 
 , (43) 

 

( ) ( ) ( ) ( )
4

1 1

3

, , , ,i t kxz

i

i

q x z t R k e e f z t
  
+−

=

 
= + 
 
 , (44) 
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( ) ( ) ( ) ( )
4

1 2 1

3

, , , ,i t kxz

i i

i

x z t H R k e e f z t
  
+−

=

 
 = + 

 
  for ( )Re 0i  , (45) 

where 
2 2 2 2

1 2 3 4, ,  and       are roots of the characteristic equations of (41) and (42) respectively 

and ( ) ( ), , 1, 2,3,4iR k i =  are the parameters depending upon k and  . 

Application of normal mode analysis to the expressions for stress components (31), (33) and (35) 

and displacement components (29) yields, (in non-dimensional form) 

 ( ) ( ) ( )
4

2 3 1

1

, , ,i t kxz

i i

i

u x z t H R e e f z t
  
+−

=

 
= + 
 
 , (46) 

 ( ) ( ) ( )
4

3 4 1

1

, , ,i t kxz

i i

i

w x z t H R e e f z t
  
+−

=

 
= + 
 
 , (47) 

 ( ) ( ) ( )
4

4 5 1

1

, , ,i t kxz

zx i i

i

x z t H R e e f z t
  
+−

=

 
= + 
 
 , (48) 

 ( ) ( ) ( )
4

5 6 1

1

, , ,i t kxz

zz i i

i

x z t H R e e f z t p
  
+−

=

 
= + − 

 
 , (49) 

 ( ) ( )
2

6

1

, , i t kxz

zy i i

i

m x z t H R e e
  +−

=

 
=  
 
 , (50) 

where all the constants used are defined in Appendix 2. 

5 Application: Thermal load acting on the surface 

 In this section, we will determine the parameters ( )1, 2, 3, 4iR i =  by postulating the 

boundary conditions at the surface of the half space. The bounding plane of the surface 0z =  is 

subjected to time dependent heat source. Therefore, at surface of the half space, the sum of 

normal stresses and initial pressure must be equal to zero and shear stress and couple stress must 

also vanish. Mathematically, boundary conditions of the problem can be expressed as 

(i) Mechanical boundary conditions: The mechanical boundary conditions at the surface z = 0 

are given as follows: 

 

( ) ( )

( ) ( )

( )

,0, ,0, 0

,0, ,0, 0

,0, 0

zz zz

zx zx

zy

x t x t p

x t x t

m x t

 

 

+ + =


+ = 


= 

, (51) 

where Maxwell’s stress is given in the form 

 ( )0zj z j j z k k ijH h H h H h  = + − . 
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(ii) Thermal boundary condition: The thermal boundary condition is 

 ( ) ( ),0, ,x t f x t = , (52) 

where ( ) ( )*,
t kx

f x t f e
 +

= . Here *f  is the intensity of the load applied. 

Applying normal mode analysis to (51) and (52) and using Eqs. (45) and (48) - (50) in the 

resulting equations, we arrive at a non-homogeneous system of four linear equations which can 

be written in the matrix form as 

 

13 14 1 1

41 42 43 44 2 2

51 52 53 54 3 3

61 62 4

0 0

0 0 0

H H R M

H H H H R M

H H H H R M

H H R

     
     
     =
     
     

   

, (53) 

where 

 5 5 5i i iH H H = + , ( )2 2 2

5 0 0i iH H k  = − , ( )1,2,3,4i = . 

Solution of system (4.53) provides us the values of ( )1, 2, 3, 4iR i =  as: 

 31 2 4
1 2 3 4, , ,R R R R

  
= = = =
   

, (54) 

where all the parameters used are defined in Appendix 3. 

 Substitution of (54) into (43) and (45) - (50), leads to the expressions of field variables 

as: 

 ( ) ( )
2

2

1

1
, , i t kxz

i

i

x z t e e
 
+−

=

 
=  

 
 , (55) 

 ( ) ( ) ( )
4

1 2 1

3

1
, , ,i t kxz

i i

i

x z t H e e f z t
  
+−

=

 
 =  + 

 
 , (56) 

 ( ) ( ) ( )
4

2 3 1

1

1
, , ,i t kxz

i i

i

u x z t H e e f z t
  
+−

=

 
=  + 

 
 , (57) 

 ( ) ( ) ( )
4

3 4 1

1

1
, , ,i t mxz

i i

i

w x z t H e e f z t
  
+−

=

 
=  + 

 
 , (58) 

 ( ) ( ) ( )
4

4 5 1

1

1
, , ,i t kzz

zx i i

i

x z t H e e f z t
  
+−

=

 
=  + 

 
 , (59) 

 ( ) ( ) ( )
4

5 6 1

1

1
, , ,i t kxz

zz i i

i

x z t H e e f z t p
  
+−

=

 
=  + − 

 
 , (60) 
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 ( ) ( )
2

6

1

1
, , i t kxz

zy i i

i

m x z t H e e
  +−

=

 
=  

 
 . (61)  

6 Special cases 

6.1 Neglecting magnetic field 

 If we neglect the magnetic field from the considered half space, then we shall be left with 

the corresponding problem in a micropolar initially stressed thermoelastic medium with laser 

pulse and temperature dependent properties. For this purpose, we set 
0 0.H =  If we further 

neglect the effect of temperature dependent property and initial stress from the considered 

medium, then the results of present research coincide with those of Othman et al. (2020) with 

appropriate changes in the theory and boundary conditions. 

6.2 Neglecting initial stress 

 The transient disturbances in a micropolar magneto-thermoelastic medium with laser 

pulse and temperature dependent properties can be obtained if we remove the initial stress from 

the governing equations. For this purpose, we shall set 0p = . Taking into consideration the 

above mentioned modification, the corresponding expressions of the physical fields can be 

obtained from the expressions (55) - (61). If we further neglect the effect of laser pulse, 

temperature dependent properties and magnetic field from the medium, then the results coincide 

with those of Othman and Singh (2007) (in the absence the rotation) with appropriate changes in 

theory. 

7 Numerical results and discussions 

 The dynamical interactions between thermal and mechanical fields in solids have many 

applications in aeronautics, nuclear reactors and high energy particle accelerators. To understand 

the interaction phenomena, we have evaluated the numerical results for non dimensional 

displacement component w, normal stress 
zz , couple stress zym  and temperature distribution   

and displayed graphically. For numerical computations, we take the following values of relevant 

parameters for magnesium crystal like material [Deswal and Kalkal (2014)]: 

 
3 31.74 10 kg m −=  , 10 1 29.4 10 kg m s − − =  , 10 1 24.0 10 kg m s − − =  , 

 
10 1 21.0 10K kg m s− − =  , 9 20.779 10 kg ms − − =  , 19 20.2 10j m−=  , 

 
* 1 12.510K Wm k− −= , 

2 1 19.623 10EC J kg k− −=  , 0.5aR = , 0.01 = , 

 
11 1

0 1 10L j m−=  , 2pt ps= , h = 0.01, 
5 12.36 10t K − −=  , p = 1, 

 0 293T K= , 0.2q s = , 0.15T s = , 0.1v s = , 
* 0.005 = . 
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 Aim of considering the numerical example is not only to investigate the effect of physical 

properties of materials on the field variables but also to ensure the accuracy of mathematical 

derivations during the entire process. We have analyzed the effects of magnetic field and initial 

stress on the fields by dividing the graphical representations into different categories. In 

Category-I (Figures 2 - 5), the effects of initial stress and magnetic field are depicted on field 

variables for the cases: (i) micropolar, initial stress and temperature dependent property with 

magnetic field (MITM, solid line), (ii) micropolar, initial stress and temperature dependent 

property (MIT, long-dashed line) and (iii) micropolar with temperature dependent property and 

magnetic field (MTM, small-dashed line). Some 3D plots of field variable are represented in 

Category-II (Figures 6 - 9). 

Category-I: Effects of initial stress and magnetic field 

 Figure 2 elucidates the space variation of normal displacement component w with 

location z for TPL theory. Absence of magnetic field (MIT) and initial stress (MTM) acts to 

decrease the magnitude of displacement field. The figure shows that normal displacement 

continuously decreases and converges to zero as z increases. Figure 3 illustrates the variation of 

normal stress against distance z for the three different media. The curves of the normal stress 
zz  

experience a similar pattern of variation for all the three i.e., MITM, MIT and MTM media. 

However, dissimilarity lies on the ground of magnitude. Also, the curves for media MITM and 

MIT do not converge to zero, as the media are already stressed, whereas in the absence of initial 

stress (MTM media) the curve converges to zero, as z increases.  

 

Figure 2: Effects of initial stress and magnetic field on displacement distribution 
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Figure 3: Effects of initial stress and magnetic field on normal stress distribution 

 Effects of magnetic field and initial stress on couple stress are presented in figure 4. As 

expected, couple stress distribution is having a coincident starting point of zero magnitude for all 

the cases, which is in good agreement with the boundary condition. Presence of magnetic field 

causes an increasing effect on the profile of couple stress. On the other hand, presence of initial 

stress has a decreasing effect on couple stress. Figure 5 is plotted to analyze the impacts of 

magnetic field and initial stress on the behaviour of temperature distribution with distance z. It is 

clear from the figure that presence of magnetic field and initial stress has an increasing effect on 

the profile of temperature field. It is also observed that all the curves have different values near 

the boundary of half space. Also, this difference becomes indistinct along with the passage of 

time. 

 

Figure 4: Effects of initial stress and magnetic field on couple stress distribution 
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Figure 5: Effects of initial stress and magnetic field on temperature distribution 

 

Category-II: Three-dimensional description 

 The 3D plots representing normal displacement distribution, normal stress distribution, 

couple stress distribution and temperature distribution are explained in figures (6-9) for a wide 

range of ( )0 5z z   and for a wide range of dimensionless time ( )0 0.1t t  . Variations of 

normal displacement with distance z and time t have been pictured in figure 6. Figure 7 depicts 

the variations of normal stress against distance z and time t. It can be noticed from the figure that 

the normal stress does not converge to zero. This is due to the fact that medium is already 

stressed.  

 

Figure 6: Profile of displacement field 
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Figure 7: Profile of normal stress 

 Figure 8 outlines the behaviour of couple stress distribution with distance z and time t. 

From the profile of couple stress, we observe that the curve has value zero in the vicinity of 

source, which agrees with the boundary condition. The values of couple stress increase as the 

time t increases, while it increases and decreases with increasing distance z. Figure 9 depicts the 

distribution of   with distance z and time t. The temperature distribution is acting like a 

decreasing function of distance z. It is clear from figure 9 that the temperature distribution has 

maximum value (in magnitude) in the vicinity of source. 

 

Figure 8: Profile of couple stress 
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Figure 9: Profile of temperature field 

8 Concluding remarks 

 In this paper, a mathematical treatment has been presented to obtain the solutions of 

displacement, temperature and stresses within the framework of micropolar magneto-

thermoelasticity with three phase lags, initial stress, temperature dependent property and laser 

pulse. Normal mode analysis technique is used which has the advantages of findings the exact 

solutions without any assumed restrictions on the field variables. The numerical work has been 

carried out with the help of computer programming using the software MATLAB. From the 

analysis of the illustrations, we can arrive at the following conclusions: 

• All the field variables satisfy the boundary conditions and hence deformation of a solid 

depends on the type of the applied force as well as on the type of boundary conditions. 

• All the field variables have non zero values in a bounded region of space except normal 

stress. Outside the region, values vanish identically and this means that the region has not 

felt thermal disturbance yet. 

• The initial stress has an increasing effect (in magnitude) on field variables , andzzw    

and a decreasing effect is observed on the magnitude of field variable zym . 

• The magnetic field plays an important role in the variations of all the field quantities. In 

the absence of magnetic field, the magnitude of all the fields decreases. 

 

Appendix 1 

 

( ) 0

11 2

1

2 K
a

c

  



  + +
= , 0

12 2

1

a
c

 




= , 

( ) 0 1 0

13 2

1

2 2

2

K T p
a

c

  



  + −
= , 
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1
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1 12 13 20 23A b b a a= + − , 

2

2 12 13 20 23A b b a a k= − , 20
3

14

b
A

b
= , 21

4

14

b
A

b
= , 

2 2

11 17b k a = + , 

 
2 2

12 19b k a = + , 
2 2

13 21 22b k a a = + + , ( ) ( )* * *

14 1 1 1v Tb K K     = + + + , 

 

2 2

2

15 241
2

q

qb a
 

  
 

= + +  
 

, 

2 2

2

16 251
2

q
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 

  
 
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, 17 26 1
p

t
b a

t

 
= −  

 
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2
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1 2
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2
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17
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 −
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 
, ( )2 1 1, 2i i iH H i= − = , 

 ( )2 3, 4iH k i= − = , ( )3 1 1, 2i iH kH i= − = , ( )3 3, 4i iH i= − = , 

 ( ) ( ) ( ) ( )2 2

4 13 14 1 15 4 13 141, 2 , 3, 4i i i i iH a a k H a i H a a k i = + − = = − + = , 

( ) ( )5 11 12 1 1, 2 ,i i iH a a k H i  = − = ( )2 2
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Appendix 3 

 ( ) ( )62 51 2 41 1 61 52 2 42 1H H L H L H H L H L = − + − , ( )1 62 1 3 2 1 3 2H M L M L M L = + + , 

 ( )2 61 1 2 2 3 3 1H L M L M L M = − − , ( ) ( )3 14 7 3 6 2 1 4 62 5 61H L M L M M L H L H = − + + , 

 ( ) ( )4 13 6 2 7 3 1 8 62 9 61H L M L M M L H L H = − − + , 
1 13 54 14 53L H H H H= − , 

 
2 13 44 14 43L H H H H= − , 

3 43 54 44 53L H H H H= − , 
4 44 51 41 54L H H H H= − , 

 
5 42 54 44 52L H H H H= − , 

6 51 62 52 61L H H H H= − , 
7 41 62 42 61L H H H H= − , 

 
8 43 51 41 53L H H H H= − , 

9 42 53 43 52L H H H H= − , ( )( ) ( )*

1 2 1 ,
t kx

M f f z t e
 


− +

= − , 

 ( ) ( )
2 5 1 ,

t kx
M f z t e

 


− +
= − , ( ) ( )

3 6 1 ,
t kx

M f z t e
 


− +

= − , 
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