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Abstract 

There are numerous approaches in numerical 

mathematics for approximating a given function by a 

class of simpler functions. Recently, wavelet functions 

have been demonstrated to be an efficient 

approximation tool. The writers of this article have 

demonstrated how to approximate a polynomial 

function using wavelet bases. Thus, this work is 

explanatory in nature and includes a full description of 

the procedure. 
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1.  Introduction  

In this Paper,we consider the problem of 

approximating a given function with the help of a 

wavelet function. Since the polynomial functions are 

commonly used in numerical mathematics, let us 

investigate the procedure for their approximation using 

wavelet techniques. In chapter-7 of [ 3 ] Rafael 

C.Gonzalez and Richard E. Woods have shown that a 

signal or function 𝑓(𝑥) can be better analyzed if we 

express it as a linear combination of expansion 

functions 

𝑓(𝑥) =∑

𝑘

𝑎𝑘𝜙𝑘(𝑥) 

where k is an integer, 𝑎𝑘 are real-valued expansion 

cofficients and the 𝜙𝑘(𝑥) are expansion functions. If 

the expansion set{𝜙𝑘(𝑥)} is a basis, for the class of 

functions that can be so expressed, then the expansion 

is unique.The expressible functions form a function 

space.This can be denoted as 

𝑉 = 𝑠𝑝𝑎𝑛𝑘𝜙𝑘(𝑥) 

 

𝑓(𝑥) ∈ 𝑉 means that 𝑓(𝑥) is in the closed span of 

{𝜙𝑘(𝑥)}. The expansion functions may form an 

orthonormal basis for V or it may be a frame. 

1.1 The wavelet series expansions  

In this work, wavelet functions have been used as 

expansion functions. Consider integer translations and 

binary dilation of a scaling function 𝜙(𝑥), that is, 
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𝜙𝑗,𝑘(𝑥) = 2
𝑗
2𝜙(2𝑗𝑥 − 𝑘) 

 

We can select 𝜙(𝑥) wisely so that {𝜙𝑗,𝑘(𝑥)} can be 

made to span the set of all measurable, square-

integrable functions 𝐿2(𝑅).  

If we specify the value 𝑗 = 𝑗′, the resulting expansion 

set,{𝜙𝑗′,𝑘(𝑥)} is a subset of {𝜙𝑗,𝑘(𝑥)} .  

We can define that subspace as  

𝑉𝑗′ = 𝑠𝑝𝑎𝑛𝑘𝜙𝑗′,𝑘(𝑥) 

 

and 𝑓(𝑥) ∈ 𝑉𝑗′ can be written as  

𝑓(𝑥) =∑

𝑘

𝑎𝑘𝜙𝑗′,𝑘(𝑥) 

 

In general, we will denote the subspace spanned over k 

for any j as  

𝑉𝑗 = 𝑠𝑝𝑎𝑛𝑘𝜙𝑗,𝑘(𝑥) (1) 

 

For a scaling function that satisfies Multiresolution 

Analysis (MRA) conditions, we can define a wavelet 

function 𝜓(𝑥) that, together with its integer translates 

and binary scalings, spans the difference between any 

two adjacent scaling subspaces , 𝑉𝑗 and 𝑉𝑗+1.  

We denote the set of wavelets {𝜓𝑗,𝑘(𝑥)} as  

𝜓𝑗,𝑘(𝑥) = 2
𝐽
2𝜓(2𝑗𝑥 − 𝑘) 

 

Thus  

𝑉1 = 𝑉0 ⊕𝑊0 

 

𝑉2 = 𝑉1 ⊕𝑊1 = 𝑉0 ⊕𝑊0 ⊕𝑊1 (2) 

 

We write  

𝑊𝑗 = 𝑠𝑝𝑎𝑛𝜓𝑗,𝑘(𝑥) 

 

For 𝑓(𝑥) ∈ 𝑊𝑗,  

𝑓(𝑥) =∑

𝑘

𝑎𝑘𝜓𝑗,𝑘(𝑥) 

 

The Scaling and wavelet function spaces are related by  

𝑉𝑗+1 = 𝑉𝑗 ⊕𝑊𝑗 

 

where ⊕ denote the union of spaces. The orthogonal 

compliment of 𝑉𝑗 in 𝑉𝑗+1 is 𝑊𝑗 and all members of 𝑉𝑗 

are orthogonal to the members of 𝑊𝑗. Therefor, 

< 𝜙𝑗,𝑘, 𝜓𝑗,𝑙 >= 0 

for 𝑗, 𝑘, 𝑙 ∈ 𝑍  

Thus, we can express the space of all measurable 

square-integrable functions as  

𝐿2(𝑅) = 𝑉0 ⊕𝑊0 ⊕𝑊1 ⊕. . .. (3) 

 or  

𝐿2(𝑅) = 𝑉1 ⊕𝑊1 ⊕𝑊2 ⊕. . .. 

or 

𝐿2(𝑅) =. . . . . . .⊕ 𝑊−2 ⊕𝑊−1 ⊕𝑊0 ⊕𝑊1 ⊕𝑊2

⊕. . . .. 

In general ,for an arbitary starting scale j’ , we can 

write  

𝐿2(𝑅) = 𝑉𝑗′ ⊕𝑊𝑗′ ⊕𝑊𝑗′+1 ⊕. . . .. 

From (1),(2) and (3), it follows that  

{𝜓𝑗,𝑘: 𝑗, 𝑘 ∈ 𝑍, 𝑗 ≥ 0}⋃ {𝜙0,𝑘: 𝑘 ∈ 𝑍} (4) 

 is a basis for 𝐿2(𝑅). Hence, we define the wavelet 

series expansion of function 𝑓(𝑥) ∈ 𝐿2(𝑅) relative to 

wavelet 𝜓(𝑥) and scaling function 𝜙(𝑥). Using (4) we 

can write wavelet series expansion of function 𝑓(𝑥) ∈

𝐿2(𝑅)  

𝑓(𝑥) = ∑𝑘 𝑐0(𝑘)𝜙0,𝑘(𝑥) +

∑∞
𝑗=0 ∑𝑘 𝑑𝑗(𝑘)𝜓𝑗,𝑘(𝑥) (5) 

 where 𝑐𝑜(𝑘) are called approximation or scaling 

cofficients, and 𝑑𝑗(𝑘) are termed as wavelet 

cofficients. These expansion coefficients are calculated 

as  

𝑐0(𝑘) =< 𝑓(𝑥), 𝜙0,𝑘(𝑥) >=

∫ 𝑓(𝑥)𝜙0,𝑘(𝑥)𝑑𝑥 (6) 

 and 

𝑑𝑗(𝑘) =< 𝑓(𝑥), 𝜓𝑗,𝑘(𝑥) >= ∫ 𝑓(𝑥)𝜓𝑗,𝑘𝑑𝑥 (7) 

 One can go through the texts [1] ,[2] and [4] for 

detailed study. 
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2. Procedure of Approximation  

In order to illustrate the procedure, let us consider the 

quadratic function  

 𝑓(𝑥) =

{
𝑥2 − 5𝑥 + 6, 0 ≤ 𝑥 < 4
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

 

 shown in Fig.(1). For the sake of simplicity, we are 

using Haar wavelets.  

 

   

                 Figure  1: Graph of f(x) 

 Haar Scaling function is defined as 

 𝜙(𝑥) = {
1, 0 ≤ 𝑥 < 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

 

 

Haar wavelet function is  

 𝜓(𝑥) = {
1, 0 ≤ 𝑥 < 0.5
−1, 𝑜. 5 ≤ 𝑥 < 1)

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

 

 From equation (5) 

. 

𝑦 = 𝑓(𝑥) =∑

𝑘

𝑐0(𝑘)𝜙0,𝑘(𝑥) +∑

∞

𝑗=0

∑

𝑘

𝑑𝑗(𝑘)𝜓𝑗,𝑘(𝑥) 

 

𝑦 = 𝑓(𝑥) = 𝑐0(0)𝜙0,0(𝑥) + 𝑐0(1)𝜙0,1(𝑥)

+ 𝑐0(2)𝜙0,2(𝑥) + 𝑐0(3)𝜙0,3(𝑥)

+∑

∞

𝑗=0

∑

𝑘

𝑑𝑗(𝑘)𝜓𝑗,𝑘(𝑥) 

Equation (6) can be used to compute expansion 

coefficients 𝑐0(𝑘):  

𝑐0(0) = ∫
4

0

(𝑥2 − 5𝑥 + 6)𝜙0,0(𝑥)𝑑𝑥

= ∫
1

0

(𝑥2 − 5𝑥 + 6)𝑑𝑥 =
23

6

= 3.833 

 

𝑐0(1) = ∫
4

0

(𝑥2 − 5𝑥 + 6)𝜙0,1(𝑥)𝑑𝑥

= ∫
4

0

(𝑥2 − 5𝑥 + 6)𝜙(𝑥 − 1)𝑑𝑥 

 = ∫
2

1
(𝑥2 − 5𝑥 + 6)𝑑𝑥 =

5

6
=

0.833 

𝑐0(2) = ∫
4

0

(𝑥2 − 5𝑥 + 6)𝜙0,2(𝑥)𝑑𝑥

= ∫
3

2

(𝑥2 − 5𝑥 + 6)𝑑𝑥 =
−1

6

= −0.166 

 𝑐0(3) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜙0,3(𝑥)𝑑𝑥 = ∫
4

3
(𝑥2 − 5𝑥 + 6)𝑑𝑥 =

5

6
= 0.833 

 

   

Figure  2: Graph of 𝑉0 

  

Using the above expansion coefficients Fig (2) shows 

the approximation of the function in the subspace 𝑉0.  
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The wavelet coefficients 𝑑𝑗(𝑘) are computed using 

equation (7). At level j= 0,  

 𝑑0(0) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓0,0(𝑥)𝑑𝑥 

 = ∫
1

0
(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 

 = ∫
1

2
0
(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 +

∫
1
1

2

(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 

= ∫

1
2

0

(𝑥2 − 5𝑥 + 6)𝑑𝑥 − ∫
1

1
2

(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 = 1 

𝑑0(1) = ∫
4

0

(𝑥2 − 5𝑥 + 6)𝜓0,1(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)𝜓(𝑥 − 1)𝑑𝑥 

 = ∫
3

2
1
(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 +

∫
2
3

2

(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 

 = ∫
3

2
1
(𝑥2 − 5𝑥 + 6)𝑑𝑥 − ∫

2
3

2

(𝑥2 −

5𝑥 + 6)𝑑𝑥 

 =
1

2
= 0.5 

 

 

 𝑑0(2) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓0,2(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)𝜓(𝑥 − 2)𝑑𝑥 

 = ∫
5

2
2
(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 +

∫
3
5

2

(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 

 = ∫
5

2
2
(𝑥2 − 5𝑥 + 6)𝑑𝑥 − ∫

3
5

2

(𝑥2 −

5𝑥 + 6)𝑑𝑥 

 = 0 

 𝑑0(3) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓0,3(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)𝜓(𝑥 − 3)𝑑𝑥 

 = ∫
7

2
3
(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 +

∫
4
7

2

(𝑥2 − 5𝑥 + 6)𝜓(𝑥)𝑑𝑥 

 = ∫
7

2
3
(𝑥2 − 5𝑥 + 6)𝑑𝑥 − ∫

4
7

2

(𝑥2 −

5𝑥 + 6)𝑑𝑥 

 =
−1

2
= −0.5 

using the above wavelet coefficients Fig. (3) shows the 

approximation of the function in the subspace 𝑊0.  

 

Figure  3: Graph of 𝑊0 

 Since  

𝑉1 = 𝑉0 ⊕𝑊0 

Fig.(4) shows the approximation of the function in the 

subspace 𝑉1.  

 

   

Figure  4: Graph of 𝑉1 
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   At level j=1 , let us compute wavelet coefficients. 

 

 𝑑1(0) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓1,0(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)√2𝜓(2𝑥)𝑑𝑥 

 = ∫
1

4
0
(𝑥2 − 5𝑥 + 6)√2𝑑𝑥 −

∫
1

2
1

4

√2(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 =
54√2

192
= 0.3977 

 

 

 𝑑1(1) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓1,1(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)√2𝜓(2𝑥 −

1)𝑑𝑥 

 = ∫
3

4
1

2

(𝑥2 − 5𝑥 + 6)√2𝑑𝑥 −

∫
1
3

4
√2(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 =
42√2

192
= 0.3093 

 

 

 𝑑1(2) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓1,2(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)√2𝜓(2𝑥 −

2)𝑑𝑥 

 = ∫
5

4
1
(𝑥2 − 5𝑥 + 6)√2𝑑𝑥 −

∫
3

2
5

4

√2(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 =
30√2

192
= 0.2209 

 

 

 𝑑1(3) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓1,3(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)√2𝜓(2𝑥 −

3)𝑑𝑥 

 = ∫
7

4
3

2

(𝑥2 − 5𝑥 + 6)√2𝑑𝑥 −

∫
2
7

4
√2(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 = 0.1325 

 𝑑1(4) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓1,4(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)√2𝜓(2𝑥 −

4)𝑑𝑥 

 = ∫
9

4
2
(𝑥2 − 5𝑥 + 6)√2𝑑𝑥 −

∫
5

2
9

4

√2(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 =
6√2

192
= 0.0441 

 

 

 𝑑1(5) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓1,5(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)√2𝜓(2𝑥 −

5)𝑑𝑥 

 = ∫
11

4
5

2

(𝑥2 − 5𝑥 + 6)√2𝑑𝑥 −

∫
3
11

4
√2(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 =
−6√2

192
= −0.0441 

 

 

 𝑑1(6) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓1,6(𝑥)𝑑𝑥 

 = ∫
4

0
(𝑥2 − 5𝑥 + 6)√2𝜓(2𝑥 −

6)𝑑𝑥 

 = ∫
13

4
3

(𝑥2 − 5𝑥 + 6)√2𝑑𝑥 −

∫
7

2
13

4

√2(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 =
−18√2

192
= −0.1325 

 

 𝑑1(7) = ∫
4

0
(𝑥2 − 5𝑥 +

6)𝜓1,7(𝑥)𝑑𝑥 
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= ∫
4

0

(𝑥2 − 5𝑥 + 6)√2𝜓(2𝑥 − 7)𝑑𝑥 

 = ∫
15

4
7

2

(𝑥2 − 5𝑥 + 6)√2𝑑𝑥 −

∫
4
15

4
√2(𝑥2 − 5𝑥 + 6)𝑑𝑥 

 =
−30√2

192
= −0.2209 

The above wavelet coefficients have been used to 

approximate the function in the subspace of next scale. 

Fig.(5) shows the approximation of the function in the 

subspace 𝑊1.  

   

Figure  5: Graph of 𝑊1 

𝑉2 = 𝑉1 ⊕𝑊1 

 

𝑐0(0) + 𝑑0(0) + 𝑑1(0) = 5.2307 

 

𝑐0(0) + 𝑑𝑜(0) + 𝑑1(1) = 5.1423 

 

𝑐0(1) + 𝑑0(1) + 𝑑1(2) = 1.5539 

 

𝑐0(1) + 𝑐0(1) + 𝑑1(3) = 1.4655 

 

𝑐0(2) + 𝑐0(2) + 𝑑1(4) = −0.1219 

 

𝑐0(2) + 𝑐0(2) + 𝑑1(5) = −0.2101 

 

𝑐0(3) + 𝑐0(3) + 𝑑1(6) = 0.2005 

𝑐0(3) + 𝑐0(3) + 𝑑1(7) = 0.1121 

 

Figure  6: Graph of 𝑉2 

 These values have been used for next scale 

approximation. Fig.(6) shows the approximation of the 

function in the subspace 𝑉2. 

 

3. Conclusion 

The terms 𝑐0(𝑘) are being used to generate a subspace 

𝑉0 approximation of the function. This approximation 

is shown in Fig(2) and is the average value of the 

original function. The terms 𝑑𝑜(𝑘) are used to refine 

the approximation by adding a level of detail from 

subspace 𝑊0. The added detail and resulting 𝑉1 

approximation are shown in Fig.(3) and Fig.(4), 

respectively. Another level of detail is added by the 

subspace 𝑊1 coefficients 𝑑1(𝑘). This additional detail 

is shown in Fig.(5) and the resulting 𝑉2 approximation 

is defined in Fig.(6).Note that the expansion is now 

beginning to resemble the original function. As higher 

scales are added, the approximation becomes a more 

precise representation of the function,realizeing it in 

the limit as 𝑗 → ∞. It is also important to note that we 

are using Haar wavelet bases which are itself 

discontinuous and approximating a continuous smooth 

function.Therefore, the resulting approximation is not 

well effective. Instead, if we use spline wavelets, then 

the resulting approximation is expected to be more 

effective. 
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