APPROXIMATION OF POLYNOMIAL FUNCTIONS USING WAVELET BASES

¹Rahul^{*}, ²Vinit Mor

1,2Open Researcher, Department of Mathematics

¹M.Sc., CSIR-NET, Haryana, India

²M.Sc., CSIR-NET, JRF, Haryana, India

Email ID: *1 rahulphogat5@gmail.com, 2 vinitrpm@gmail.com*

Accepted: 11.03.2022 **Published**: 01.04.2022

Keywords: Approximation, Polynomial Functions.

Abstract

There are numerous approaches in numerical mathematics for approximating a given function by a class of simpler functions. Recently, wavelet functions have been demonstrated to be an efficient approximation tool. The writers of this article have demonstrated how to approximate a polynomial function using wavelet bases. Thus, this work is explanatory in nature and includes a full description of the procedure.

Paper Identification

**Corresponding Author*

1. Introduction

In this Paper,we consider the problem of approximating a given function with the help of a wavelet function. Since the polynomial functions are commonly used in numerical mathematics, let us investigate the procedure for their approximation using wavelet techniques. In chapter-7 of [3] Rafael C.Gonzalez and Richard E. Woods have shown that a signal or function $f(x)$ can be better analyzed if we express it as a linear combination of expansion functions

$$
f(x) = \sum_{k} a_{k} \phi_{k}(x)
$$

where k is an integer, a_k are real-valued expansion cofficients and the $\phi_k(x)$ are expansion functions. If the expansion set $\{\phi_k(x)\}\$ is a basis, for the class of functions that can be so expressed, then the expansion is unique.The expressible functions form a function space.This can be denoted as

$$
V = span_k \phi_k(x)
$$

 $f(x) \in V$ means that $f(x)$ is in the closed span of ${\phi_k(x)}$. The expansion functions may form an orthonormal basis for V or it may be a frame.

1.1 The wavelet series expansions

In this work, wavelet functions have been used as expansion functions. Consider integer translations and binary dilation of a scaling function $\phi(x)$, that is,

$$
\phi_{j,k}(x) = 2^{\frac{j}{2}}\phi(2^jx - k)
$$

We can select $\phi(x)$ wisely so that $\{\phi_{j,k}(x)\}\)$ can be made to span the set of all measurable, squareintegrable functions $L^2(R)$.

If we specify the value $j = j'$, the resulting expansion set, $\{\phi_{j\prime,k}(x)\}\$ is a subset of $\{\phi_{j,k}(x)\}\$.

We can define that subspace as

$$
V_{j\prime} = span_{k} \phi_{j\prime,k(x)}
$$

and $f(x) \in V_i$, can be written as

$$
f(x) = \sum_{k} a_{k} \phi_{j\prime,k}(x)
$$

In general, we will denote the subspace spanned over k for any j as

$$
V_j = \overline{span_k \phi_{j,k}(x)}\tag{1}
$$

For a scaling function that satisfies Multiresolution Analysis (MRA) conditions, we can define a wavelet function $\psi(x)$ that, together with its integer translates and binary scalings, spans the difference between any two adjacent scaling subspaces, V_j and V_{j+1} .

We denote the set of wavelets $\{\psi_{j,k}(x)\}\)$ as

$$
\psi_{j,k}(x)=2^{\frac{J}{2}}\psi(2^jx-k)
$$

Thus

$$
V_1 = V_0 \oplus W_0
$$

$$
V_2 = V_1 \oplus W_1 = V_0 \oplus W_0 \oplus W_1
$$

We write

$$
W_j = \overline{span\psi_{j,k}(x)}
$$

For $f(x) \in W_j$,

$$
f(x) = \sum_{k} a_{k} \psi_{j,k}(x)
$$

The Scaling and wavelet function spaces are related by

$$
V_{j+1} = V_j \oplus W_j
$$

where \oplus denote the union of spaces. The orthogonal compliment of V_j in V_{j+1} is W_j and all members of V_j are orthogonal to the members of W_j . Therefor,

$$
<\phi_{j,k},\psi_{j,l}>=0
$$

for $j, k, l \in Z$

Thus, we can express the space of all measurable square-integrable functions as

$$
L^2(R) = V_0 \oplus W_0 \oplus W_1 \oplus \dots \tag{3}
$$

or

$$
L^2(R) = V_1 \oplus W_1 \oplus W_2 \oplus \ldots
$$

or

$$
L^2(R) = \dots \dots \oplus W_{-2} \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus W_2
$$

$$
\oplus \dots \oplus W_{-n}
$$

In general , for an arbitary starting scale j' , we can write

$$
L^2(R) = V_j, \oplus W_j, \oplus W_{j+1} \oplus \ldots
$$

From (1) , (2) and (3) , it follows that

$$
\{\psi_{j,k}: j,k \in \mathbb{Z}, j \ge 0\} \cup \{\phi_{0,k}: k \in \mathbb{Z}\}
$$
 (4)

is a basis for $L^2(R)$. Hence, we define the wavelet series expansion of function $f(x) \in L^2(R)$ relative to wavelet $\psi(x)$ and scaling function $\phi(x)$. Using (4) we can write wavelet series expansion of function $f(x) \in$ $L^2(R)$

$$
f(x) = \sum_k c_0(k) \phi_{0,k}(x) +
$$

$$
\sum_{j=0}^{\infty} \sum_{k} d_j(k) \psi_{j,k}(x) \tag{5}
$$

(2) cofficients. These expansion coefficients are calculated where $c_o(k)$ are called approximation or scaling cofficients, and $d_i(k)$ are termed as wavelet as

$$
c_0(k) = \langle f(x), \phi_{0,k}(x) \rangle =
$$

$$
\int f(x)\phi_{0,k}(x)dx
$$

and (6)

$$
d_j(k) = \langle f(x), \psi_{j,k}(x) \rangle = \int f(x)\psi_{j,k}dx \tag{7}
$$

One can go through the texts [1] ,[2] and [4] for detailed study.

2. Procedure of Approximation

In order to illustrate the procedure, let us consider the quadratic function

$$
f(x) =
$$

$$
\begin{cases} x^2 - 5x + 6, & 0 \le x < 4 \\ 0, & elsewhere. \end{cases}
$$

shown in Fig.(1). For the sake of simplicity, we are using Haar wavelets.

Figure 1: Graph of $f(x)$

Haar Scaling function is defined as

$$
\phi(x) = \begin{cases} 1, & 0 \le x < 1 \\ 0 & \text{elsewhere.} \end{cases}
$$

Haar wavelet function is

$$
\psi(x) = \begin{cases}\n1, & 0 \le x < 0.5 \\
-1, & 0.5 \le x < 1 \\
0, & elsewhere.\n\end{cases}
$$

From equation (5) .

$$
y = f(x) = \sum_{k} c_0(k)\phi_{0,k}(x) + \sum_{j=0}^{\infty} \sum_{k} d_j(k)\psi_{j,k}(x)
$$

$$
y = f(x) = c_0(0)\phi_{0,0}(x) + c_0(1)\phi_{0,1}(x)
$$

+ $c_0(2)\phi_{0,2}(x) + c_0(3)\phi_{0,3}(x)$
+ $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} d_j(k)\psi_{j,k}(x)$

Equation (6) can be used to compute expansion coefficients $c_0(k)$:

 \boldsymbol{k}

 $j=0$

$$
c_0(0) = \int_0^4 (x^2 - 5x + 6) \phi_{0,0}(x) dx
$$

=
$$
\int_0^1 (x^2 - 5x + 6) dx = \frac{23}{6}
$$

= 3.833

$$
c_0(1) = \int_0^1 (x^2 - 5x + 6)\phi_{0,1}(x)dx
$$

=
$$
\int_0^4 (x^2 - 5x + 6)\phi(x - 1)dx
$$

=
$$
\int_1^2 (x^2 - 5x + 6)dx = \frac{5}{6} =
$$

0.833

 $\overline{2}$

$$
c_0(2) = \int_0^4 (x^2 - 5x + 6) \phi_{0,2}(x) dx
$$

$$
= \int_{2}^{3} (x^{2} - 5x + 6) dx = \frac{-1}{6}
$$

$$
= -0.166
$$

$$
c_0(3) = \int_0^4 (x^2 - 5x +
$$

$$
6)\phi_{0,3}(x)dx = \int_3^4 (x^2 - 5x + 6)dx = \frac{5}{6} = 0.833
$$

Figure 2: Graph of V_0

Using the above expansion coefficients Fig (2) shows the approximation of the function in the subspace V_0 .

The wavelet coefficients $d_i(k)$ are computed using equation (7). At level $j=0$,

$$
d_0(0) = \int_0^4 (x^2 - 5x +
$$

6) $\psi_{0,0}(x)dx$

$$
= \int_0^1 (x^2 - 5x + 6)\psi(x)dx
$$

=
$$
\int_0^{\frac{1}{2}} (x^2 - 5x + 6)\psi(x)dx +
$$

$$
\int_{\frac{1}{2}}^{\frac{1}{2}} (x^2 - 5x + 6)\psi(x) dx
$$

=
$$
\int_{0}^{\frac{1}{2}} (x^2 - 5x + 6) dx - \int_{\frac{1}{2}}^{\frac{1}{2}} (x^2 - 5x + 6) dx
$$

= 1

$$
d_0(1) = \int_{0}^{4} (x^2 - 5x + 6)\psi_{0,1}(x) dx
$$

=
$$
\int_{0}^{4} (x^2 - 5x + 6)\psi(x - 1) dx
$$

=
$$
\int_{1}^{\frac{3}{2}} (x^2 - 5x + 6)\psi(x) dx +
$$

 $\int_{\frac{3}{2}}^{2} (x^2 - 5x + 6) \psi(x) dx$

$$
= \int_{1}^{\frac{3}{2}} (x^2 - 5x + 6) dx - \int_{\frac{3}{2}}^{2} (x^2 - 6) dx
$$

 $5x + 6$) dx

 $=\frac{1}{2}$ $\frac{1}{2} = 0.5$

$$
= \int_{3}^{\frac{7}{2}} (x^2 - 5x + 6)\psi(x)dx +
$$

$$
= 5x + 6\psi(x)dx
$$

$$
= \int_{3}^{\frac{7}{2}} (x^2 - 5x + 6)dx - \int_{\frac{7}{2}}^{4} (x^2 - 6)dx
$$

7

 $5x + 6$) dx

 $\int_{\frac{7}{2}}^{4} (x)$

$$
=\frac{-1}{2}=-0.5
$$

using the above wavelet coefficients Fig. (3) shows the approximation of the function in the subspace W_0 .

Figure 3: Graph of W_0

Since

$$
V_1 = V_0 \oplus W_0
$$

Fig.(4) shows the approximation of the function in the subspace V_1 .

Figure 4: Graph of V_1

At level j=1 , let us compute wavelet coefficients.

$$
d_1(0) = \int_0^4 (x^2 - 5x +
$$

6) $\psi_{1,0}(x)dx$

$$
= \int_0^4 (x^2 - 5x + 6)\sqrt{2}\psi(2x)dx
$$

$$
= \int_0^{\frac{1}{4}} (x^2 - 5x + 6)\sqrt{2}dx -
$$

$$
\int_{\frac{1}{4}}^{\frac{1}{2}} \sqrt{2}(x^2 - 5x + 6)dx
$$

$$
= \frac{54\sqrt{2}}{192} = 0.3977
$$

$$
d_1(1) = \int_0^4 (x^2 - 5x +
$$

6) $\psi_{1,1}(x)dx$

$$
= \int_0^4 (x^2 - 5x + 6) \sqrt{2} \psi (2x -
$$

 $1)dx$

$$
= \int_{\frac{1}{2}}^{\frac{3}{4}} (x^2 - 5x + 6) \sqrt{2} dx -
$$

$$
\int_{\frac{3}{4}}^{\frac{1}{2}} \sqrt{2(x^2 - 5x + 6)} dx
$$

= $\frac{42\sqrt{2}}{192} = 0.3093$

$$
d_1(2) = \int_0^4 (x^2 - 5x + 1) dx
$$

6) $\psi_{1,2}(x)dx$

$$
= \int_0^4 (x^2 - 5x + 6) \sqrt{2} \psi(2x -
$$

 $2)dx$

$$
= \int_{\frac{5}{4}}^{\frac{5}{2}} (x^2 - 5x + 6) \sqrt{2} dx -
$$

$$
\int_{\frac{5}{4}}^{\frac{3}{2}} \sqrt{2}(x^2 - 5x + 6) dx
$$

$$
= \frac{30\sqrt{2}}{192} = 0.2209
$$

$$
d_1(3) = \int_0^4 (x^2 - 5x +
$$

6) $\psi_{1,3}(x)dx$

$$
= \int_0^4 (x^2 - 5x + 6) \sqrt{2} \psi(2x -
$$

 $=\int_0^4$ $\int_0^4 (x^2 - 5x + 6) \sqrt{2} \psi(2x =\int_{2}^{\frac{9}{4}} (x^2 - 5x + 6) \sqrt{2} dx \frac{5}{2}$ $\sqrt{2(x^2-5x+6)}dx$ $=\frac{6\sqrt{2}}{102}$ $\frac{642}{192} = 0.0441$ $d_1(5) = \int_0^4$ $\int_{0}^{4} (x^2 - 5x +$ $6\psi_{1,5}(x)dx$ $=\int_0^4$ $\int_0^4 (x^2 - 5x + 6) \sqrt{2} \psi(2x -$ 11

= ∫ $\begin{array}{c} 7 \\ 4 \\ 3 \\ 2 \end{array}$

 $= 0.1325$

 $d_1(4) = \int_0^4$

 $\int_{\frac{7}{4}}^{2} \sqrt{2(x^2-5x+6)} dx$

6) $\psi_{1,4}(x)dx$

 $4)dx$

∫

 $5)dx$

 $(x^2 - 5x + 6)\sqrt{2}dx$ –

 x^4 (x^2 – 5x +

$$
= \int_{\frac{5}{2}}^{\frac{1}{2}} (x^2 - 5x + 6) \sqrt{2} dx -
$$

$$
\int_{\frac{11}{4}}^{\frac{3}{4}} \sqrt{2(x^2 - 5x + 6)} dx
$$

$$
=\frac{-6\sqrt{2}}{192}=-0.0441
$$

$$
d_1(6) = \int_0^4 (x^2 - 5x +
$$

6) $\psi_{1,6}(x)dx$

$$
= \int_0^4 (x^2 - 5x + 6) \sqrt{2} \psi(2x -
$$

 $6)dx$

∫

6) $\psi_{1,7}(x)dx$

$$
= \int_3^{\frac{13}{4}} (x^2 - 5x + 6) \sqrt{2} dx -
$$

$$
\frac{\frac{7}{2}}{\frac{13}{4}}\sqrt{2}(x^2 - 5x + 6)dx
$$

$$
= \frac{-18\sqrt{2}}{192} = -0.1325
$$

$$
r^4 \quad \circ
$$

 $d_1(7) = \int_0^4$ x^4 (x^2 – 5x +

 $3)dx$

$$
= \int_0^4 (x^2 - 5x + 6)\sqrt{2}\psi(2x - 7)dx
$$

$$
= \int_{\frac{15}{2}}^{\frac{15}{4}} (x^2 - 5x + 6)\sqrt{2}dx -
$$

$$
\int_{\frac{15}{4}}^{\frac{4}{4}} \sqrt{2}(x^2 - 5x + 6)dx
$$

$$
= \frac{-30\sqrt{2}}{192} = -0.2209
$$

The above wavelet coefficients have been used to approximate the function in the subspace of next scale. Fig.(5) shows the approximation of the function in the subspace W_1 .

Figure 5: Graph of W_1 $V_2 = V_1 \oplus W_1$ $c_0(0) + d_0(0) + d_1(0) = 5.2307$ $c_0(0) + d_0(0) + d_1(1) = 5.1423$ $c_0(1) + d_0(1) + d_1(2) = 1.5539$ $c_0(1) + c_0(1) + d_1(3) = 1.4655$ $c_0(2) + c_0(2) + d_1(4) = -0.1219$ $c_0(2) + c_0(2) + d_1(5) = -0.2101$

Figure 6: Graph of V_2

These values have been used for next scale approximation. Fig.(6) shows the approximation of the function in the subspace V_2 .

3. Conclusion

The terms $c_0(k)$ are being used to generate a subspace V_0 approximation of the function. This approximation is shown in Fig (2) and is the average value of the original function. The terms $d_o(k)$ are used to refine the approximation by adding a level of detail from subspace W_0 . The added detail and resulting V_1 approximation are shown in Fig. (3) and Fig. (4) , respectively. Another level of detail is added by the subspace W_1 coefficients $d_1(k)$. This additional detail is shown in Fig.(5) and the resulting V_2 approximation is defined in Fig.(6).Note that the expansion is now beginning to resemble the original function. As higher scales are added, the approximation becomes a more precise representation of the function,realizeing it in the limit as $j \to \infty$. It is also important to note that we are using Haar wavelet bases which are itself discontinuous and approximating a continuous smooth function.Therefore, the resulting approximation is not well effective. Instead, if we use spline wavelets, then the resulting approximation is expected to be more effective.

RÉFÉRENCIAS

- [1]. George Bachman,Lawrence Narici and Edwaed Beckenstein, Fourier and Wavelet Analysis, Springer-Verlag New York,2000.
- [2]. M.K.Jain, S.R.K. Iyenger and R.K. Jain, Numerical Methods, New Age International (P) Ltd., Delhi India, Sixth Edition: 2012.
- [3]. Rafael C Gonzalez and Richard E. Woods, Prentice Hall Upper River, New Jersey 07458.
- [4]. 4. Stephane Mallat,A Wavelet Tour of Signal Processing, The Sparse Way, Academic Press, An imprint of Elsevier 30 Corporate Drive, suite 400, Burlington, MA 01803, 2009.