APPROXIMATION OF POLYNOMIAL FUNCTIONS USING WAVELET BASES

¹Rahul^{*}, ²Vinit Mor

^{1,2}Open Researcher, Department of Mathematics

¹M.Sc., CSIR-NET, Haryana, India

²M.Sc., CSIR-NET, JRF, Haryana, India

Email ID: ¹rahulphogat5@gmail.com, ²vinitrpm@gmail.com

Accepted: 11.03.2022

Keywords: Approximation, Polynomial Functions.

Abstract

There are numerous approaches in numerical mathematics for approximating a given function by a class of simpler functions. Recently, wavelet functions have been demonstrated to be an efficient approximation tool. The writers of this article have demonstrated how to approximate a polynomial function using wavelet bases. Thus, this work is explanatory in nature and includes a full description of the procedure.

Paper Identification

*Corresponding Author

1. Introduction

In this Paper, we consider the problem of approximating a given function with the help of a wavelet function. Since the polynomial functions are commonly used in numerical mathematics, let us investigate the procedure for their approximation using wavelet techniques. In chapter-7 of $\begin{bmatrix} 3 \end{bmatrix}$ Rafael C.Gonzalez and Richard E. Woods have shown that a signal or function f(x) can be better analyzed if we express it as a linear combination of expansion functions

$$f(x) = \sum_{k} a_{k} \phi_{k}(x)$$

where k is an integer, a_k are real-valued expansion cofficients and the $\phi_k(x)$ are expansion functions. If the expansion set{ $\phi_k(x)$ } is a basis, for the class of functions that can be so expressed, then the expansion is unique. The expressible functions form a function space. This can be denoted as

$$V = span_k \phi_k(x)$$

 $f(x) \in V$ means that f(x) is in the closed span of $\{\phi_k(x)\}$. The expansion functions may form an orthonormal basis for V or it may be a frame.

1.1 The wavelet series expansions

In this work, wavelet functions have been used as expansion functions. Consider integer translations and binary dilation of a scaling function $\phi(x)$, that is,

Published: 01.04.2022

$$\phi_{i,k}(x) = 2^{\frac{j}{2}}\phi(2^jx - k)$$

We can select $\phi(x)$ wisely so that $\{\phi_{j,k}(x)\}$ can be made to span the set of all measurable, squareintegrable functions $L^2(R)$.

If we specify the value j = j', the resulting expansion set,{ $\phi_{j',k}(x)$ } is a subset of { $\phi_{j,k}(x)$ }.

We can define that subspace as

$$V_{j\prime} = \overline{span_k \phi_{j\prime,k(x)}}$$

and $f(x) \in V_{i'}$ can be written as

$$f(x) = \sum_{k} a_k \phi_{j',k}(x)$$

In general, we will denote the subspace spanned over k for any j as

$$V_j = span_k \phi_{j,k}(x)$$

For a scaling function that satisfies Multiresolution Analysis (MRA) conditions, we can define a wavelet function $\psi(x)$ that, together with its integer translates and binary scalings, spans the difference between any two adjacent scaling subspaces, V_j and V_{j+1} .

We denote the set of wavelets $\{\psi_{j,k}(x)\}$ as

$$\psi_{j,k}(x) = 2^{\frac{j}{2}} \psi(2^{j}x - k)$$

Thus

$$V_1 = V_0 \oplus W_0$$

$$V_2 = V_1 \oplus W_1 = V_0 \oplus W_0 \oplus W_1$$

We write

$$W_i = \overline{span\psi_{i,k}(x)}$$

For $f(x) \in W_j$,

$$f(x) = \sum_{k} a_k \psi_{j,k}(x)$$

The Scaling and wavelet function spaces are related by

$$V_{j+1} = V_j \oplus W_j$$

where \bigoplus denote the union of spaces. The orthogonal compliment of V_j in V_{j+1} is W_j and all members of V_j are orthogonal to the members of W_j . Therefor,

$$\langle \phi_{j,k}, \psi_{j,l} \rangle = 0$$

for $j, k, l \in Z$

Thus, we can express the space of all measurable square-integrable functions as

$$L^{2}(R) = V_{0} \oplus W_{0} \oplus W_{1} \oplus \dots$$
(3)

or

$$L^2(R) = V_1 \oplus W_1 \oplus W_2 \oplus \dots$$

or

$$\mathcal{L}^{2}(R) = \dots \oplus W_{-2} \oplus W_{-1} \oplus W_{0} \oplus W_{1} \oplus W_{2} \oplus \dots$$

(1) In general ,for an arbitary starting scale j', we can write

$$L^{2}(R) = V_{j} \oplus W_{j} \oplus W_{j'+1} \oplus \cdots$$

From (1),(2) and (3), it follows that

$$\{\psi_{j,k}: j, k \in Z, j \ge 0\} \cup \{\phi_{0,k}: k \in Z\}$$
(4)

is a basis for $L^2(R)$. Hence, we define the wavelet series expansion of function $f(x) \in L^2(R)$ relative to wavelet $\psi(x)$ and scaling function $\phi(x)$. Using (4) we can write wavelet series expansion of function $f(x) \in$ $L^2(R)$

$$f(x) = \sum_k c_0(k)\phi_{0,k}(x) -$$

$$\sum_{j=0}^{\infty}\sum_{k}d_{j}(k)\psi_{j,k}(x)$$

(5)

where $c_o(k)$ are called approximation or scaling cofficients, and $d_j(k)$ are termed as wavelet ⁽²⁾ cofficients. These expansion coefficients are calculated as

$$c_0(k) = \langle f(x), \phi_{0,k}(x) \rangle =$$

 $\int f(x)\phi_{0,k}(x)dx$ (6)
and

 $d_j(k) = \langle f(x), \psi_{j,k}(x) \rangle = \int f(x)\psi_{j,k}dx$ (7)

One can go through the texts [1],[2] and [4] for detailed study.

2. Procedure of Approximation

In order to illustrate the procedure, let us consider the quadratic function

$$f(x) =$$

 $\begin{cases} x^2 - 5x + 6, & 0 \le x < 4 \\ 0, & elsewhere. \end{cases}$

shown in Fig.(1). For the sake of simplicity, we are using Haar wavelets.

Figure 1: Graph of f(x)

Haar Scaling function is defined as

$$\phi(x) = \begin{cases} 1, & 0 \le x < 1 \\ 0 & elsewhere. \end{cases}$$

Haar wavelet function is

$$\psi(x) = \begin{cases} 1, & 0 \le x < 0.5 \\ -1, & o.5 \le x < 1 \\ 0, & elsewhere. \end{cases}$$

From equation (5)

$$y = f(x) = \sum_{k} c_0(k)\phi_{0,k}(x) + \sum_{j=0}^{\infty} \sum_{k} d_j(k)\psi_{j,k}(x)$$

$$y = f(x) = c_0(0)\phi_{0,0}(x) + c_0(1)\phi_{0,1}(x) + c_0(2)\phi_{0,2}(x) + c_0(3)\phi_{0,3}(x) + \sum_{j=0}^{\infty} \sum_k d_j(k)\psi_{j,k}(x)$$

Equation (6) can be used to compute expansion coefficients $c_0(k)$:

$$c_0(0) = \int_0^4 (x^2 - 5x + 6)\phi_{0,0}(x)dx$$
$$= \int_0^1 (x^2 - 5x + 6)dx = \frac{23}{6}$$
$$= 3.833$$

$$c_0(1) = \int_0^{4} (x^2 - 5x + 6)\phi_{0,1}(x)dx$$
$$= \int_0^{4} (x^2 - 5x + 6)\phi(x - 1)dx$$
$$= \int_1^{2} (x^2 - 5x + 6)dx = \frac{5}{6} =$$

0.833

$$c_0(2) = \int_0^4 (x^2 - 5x + 6)\phi_{0,2}(x)dx$$
$$= \int_2^3 (x^2 - 5x + 6)dx =$$

$$c_0(3) = \int_0^4 (x^2 - 5x + x^2) dx + y = \int_0^4 (x^2 - 5x + y$$

-1

 $6)\phi_{0,3}(x)dx = \int_3^4 (x^2 - 5x + 6)dx = \frac{5}{6} = 0.833$

Figure 2: Graph of V_0

Using the above expansion coefficients Fig (2) shows the approximation of the function in the subspace V_0 . The wavelet coefficients $d_i(k)$ are computed using equation (7). At level j=0,

$$d_0(0) = \int_0^4 (x^2 - 5x + 1)^4 d_0(0) = \int_0^4 (x^2 - 5x + 1$$

 $6)\psi_{0,0}(x)dx$

$$= \int_0^1 (x^2 - 5x + 6)\psi(x)dx$$
$$= \int_0^{\frac{1}{2}} (x^2 - 5x + 6)\psi(x)dx + \frac{1}{2}\psi(x)dx + \frac{1}{2}$$

$$\int_{\frac{1}{2}}^{\frac{1}{2}} (x^2 - 5x + 6)\psi(x)dx$$

= $\int_{0}^{\frac{1}{2}} (x^2 - 5x + 6)dx - \int_{\frac{1}{2}}^{1} (x^2 - 5x + 6)dx$
= 1
 $d_0(1) = \int_{0}^{4} (x^2 - 5x + 6)\psi_{0,1}(x)dx$
= $\int_{0}^{4} (x^2 - 5x + 6)\psi(x - 1)dx$
= $\int_{1}^{\frac{3}{2}} (x^2 - 5x + 6)\psi(x)dx + 0$

 $\int_{3}^{2} (x^{2} - 5x + 6)\psi(x)dx$

$$= \int_{1}^{\frac{3}{2}} (x^2 - 5x + 6) dx - \int_{\frac{3}{2}}^{\frac{3}{2}} (x^2 - 5x$$

5x + 6)dx

 $=\frac{1}{2}=0.5$

$$= \int_{3}^{\frac{7}{2}} (x^{2} - 5x + 6)\psi(x)dx +$$
$$\int_{\frac{7}{2}}^{\frac{4}{2}} (x^{2} - 5x + 6)\psi(x)dx$$
$$= \int_{3}^{\frac{7}{2}} (x^{2} - 5x + 6)dx - \int_{\frac{7}{2}}^{\frac{4}{2}} (x^{2} - 5x + 6)dx + \int_{\frac{7}{2}}^{\frac{4}{2}} ($$

5x + 6)dx

$$=\frac{-1}{2}=-0.5$$

using the above wavelet coefficients Fig. (3) shows the approximation of the function in the subspace W_0 .

Figure 3: Graph of W_0

Since

$$V_1 = V_0 \oplus W_0$$

Fig.(4) shows the approximation of the function in the subspace V_1 .

Figure 4: Graph of V_1

 $6)\psi_{0,2}(x)dx$

5x + 6)dx

 $6)\psi_{0,3}(x)dx$

At level j=1, let us compute wavelet coefficients.

 $6)\psi_{1,0}(x)dx$

 $\int_{\frac{1}{4}}^{\frac{1}{2}} \sqrt{2} (x^2)$

$$= \int_0^4 (x^2 - 5x + 6)\sqrt{2}\psi(2x)dx$$
$$= \int_0^{\frac{1}{4}} (x^2 - 5x + 6)\sqrt{2}dx - 5x + 6)dx$$

$$=\frac{54\sqrt{2}}{192}=0.3977$$

$$d_1(1) = \int_0^4 (x^2 - 5x +$$

 $6)\psi_{1,1}(x)dx$

$$= \int_0^4 (x^2 - 5x + 6)\sqrt{2}\psi(2x - 5x + 6)}$$

1)dx

$$=\int_{\frac{1}{2}}^{\frac{3}{4}} (x^2 - 5x + 6)\sqrt{2} dx$$

$$\int_{\frac{3}{4}}^{1} \sqrt{2}(x^2 - 5x + 6)dx$$
$$= \frac{42\sqrt{2}}{192} = 0.3093$$

$$d_1(2) = \int_0^4 (x^2 - 5x + 1)^4 d_1(x) = \int_0^4 (x^2 - 5x + 1$$

 $6)\psi_{1,2}(x)dx$

$$= \int_0^4 (x^2 - 5x + 6)\sqrt{2}\psi(2x - 5x + 6)}$$

2)*dx*

$$= \int_{1}^{\frac{5}{4}} (x^{2} - 5x + 6)\sqrt{2}dx - \int_{\frac{5}{4}}^{\frac{3}{2}} \sqrt{2}(x^{2} - 5x + 6)dx$$
$$= \frac{30\sqrt{2}}{192} = 0.2209$$

$$d_1(3) = \int_0^4 (x^2 - 5x + x) dx = \int_0^4 (x^2 - 5x) dx + x$$

 $6)\psi_{1,3}(x)dx$

$$=\int_0^4 (x^2 - 5x + 6)\sqrt{2}\psi(2x)$$

$$= \int_{0}^{4} (x^{2} - 5x + 6)\sqrt{2}\psi(2x - 4)dx$$

$$= \int_{2}^{\frac{9}{4}} (x^{2} - 5x + 6)\sqrt{2}dx - 5x + 6)\sqrt{2}dx - 5x + 6)dx$$

$$= \frac{6\sqrt{2}}{192} = 0.0441$$

$$d_{1}(5) = \int_{0}^{4} (x^{2} - 5x + 6)\sqrt{2}\psi(2x - 5)dx$$

$$= \int_{0}^{4} (x^{2} - 5x + 6)\sqrt{2}\psi(2x - 5)dx$$

$$= \int_{\frac{5}{4}}^{\frac{11}{4}} (x^{2} - 5x + 6)\sqrt{2}dx - 5dx$$

 $\int_{\frac{7}{4}}^{2} \sqrt{2}(x^2 - 5x + 6)dx$

 $6)\psi_{1,4}(x)dx$

 $\int_{\frac{9}{4}}^{\frac{5}{2}}$

 $=\int_{\frac{3}{2}}^{\frac{7}{4}} (x^2 - 5x + 6)\sqrt{2}dx -$

 $d_1(4) = \int_0^4 (x^2 - 5x +$

= 0.1325

$$=\frac{-6\sqrt{2}}{192}=-0.0441$$

$$d_1(6) = \int_0^4 (x^2 - 5x + x) d_1(6) = \int_0^4 (x^2 - 5x) d_1(6) d_1(6)$$

 $6)\psi_{1,6}(x)dx$

 $6)\psi_{1,7}(x)dx$

6)*dx*

$$\int_0^4 (x^2 - 5x + 6)\sqrt{2}\psi(2x - 5x + 6)\sqrt{2}\psi(2x - 5x + 6))$$

$$=\int_{3}^{\frac{13}{4}} (x^2 - 5x + 6)\sqrt{2}dx -$$

$$\int_{\frac{13}{4}}^{\frac{7}{2}} \sqrt{2}(x^2 - 5x + 6)dx$$
$$= \frac{-18\sqrt{2}}{192} = -0.1325$$

$$d_1(7) = \int_0^4 (x^2 - 5x +$$

3)*dx*

$$= \int_{0}^{4} (x^{2} - 5x + 6)\sqrt{2}\psi(2x - 7)dx$$
$$= \int_{\frac{7}{2}}^{\frac{15}{4}} (x^{2} - 5x + 6)\sqrt{2}dx - \int_{\frac{15}{4}}^{\frac{4}{5}} \sqrt{2}(x^{2} - 5x + 6)dx$$
$$= \frac{-30\sqrt{2}}{192} = -0.2209$$

The above wavelet coefficients have been used to approximate the function in the subspace of next scale. Fig.(5) shows the approximation of the function in the subspace W_1 .

Figure 5: Graph of W_1 $V_2 = V_1 \oplus W_1$ $c_0(0) + d_0(0) + d_1(0) = 5.2307$ $c_0(0) + d_0(0) + d_1(1) = 5.1423$ $c_0(1) + d_0(1) + d_1(2) = 1.5539$ $c_0(1) + c_0(1) + d_1(3) = 1.4655$ $c_0(2) + c_0(2) + d_1(4) = -0.1219$ $c_0(2) + c_0(2) + d_1(5) = -0.2101$

Figure 6: Graph of V_2

These values have been used for next scale approximation. Fig.(6) shows the approximation of the function in the subspace V_2 .

3. Conclusion

The terms $c_0(k)$ are being used to generate a subspace V_0 approximation of the function. This approximation is shown in Fig(2) and is the average value of the original function. The terms $d_o(k)$ are used to refine the approximation by adding a level of detail from subspace W_0 . The added detail and resulting V_1 approximation are shown in Fig.(3) and Fig.(4), respectively. Another level of detail is added by the subspace W_1 coefficients $d_1(k)$. This additional detail is shown in Fig.(5) and the resulting V_2 approximation is defined in Fig.(6).Note that the expansion is now beginning to resemble the original function. As higher scales are added, the approximation becomes a more precise representation of the function, realizeing it in the limit as $j \to \infty$. It is also important to note that we are using Haar wavelet bases which are itself discontinuous and approximating a continuous smooth function. Therefore, the resulting approximation is not well effective. Instead, if we use spline wavelets, then the resulting approximation is expected to be more effective.

RÉFÉRENCIAS

- George Bachman, Lawrence Narici and Edwaed Beckenstein, Fourier and Wavelet Analysis, Springer-Verlag New York, 2000.
- [2]. M.K.Jain, S.R.K. Iyenger and R.K. Jain, Numerical Methods, New Age International (P) Ltd., Delhi India, Sixth Edition: 2012.
- [3]. Rafael C Gonzalez and Richard E. Woods, Prentice Hall Upper River, New Jersey 07458.
- [4]. 4. Stephane Mallat, A Wavelet Tour of Signal Processing, The Sparse Way, Academic Press, An imprint of Elsevier 30 Corporate Drive, suite 400, Burlington, MA 01803, 2009.