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Abstract 

Fuzzy sets are a powerful tool for coping with uncertainty and imprecision in a variety of 

disciplines, but their basic implementations are limited in their ability to represent complex and 

ambiguous data. This paper investigates the significance and practical applications of fuzzy set 

extensions, such as Intuitionistic Fuzzy Sets, Pythagorean Fuzzy Sets, and Fermatean Fuzzy Sets, 

which surmount these limitations and permit more complex analysis. In addition, we discuss 

operators on Intuitionistic Fuzzy Sets, establish theorems regarding their relationships, and 

introduce a new distance measure that takes into account both membership and non-membership 

functions, demonstrating its significance through a pattern recognition problem. The results 

demonstrate the potential of fuzzy set extensions, operators, and distance measures for obtaining 

a deeper understanding of complex real-world systems and making informed decisions in a 

variety of fields.  
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1. Introduction 

L.A.“Zadeh created fuzzy set (FS) theory in 1965{15} to resolve ambiguous and inaccurate 

information. Each entry in a FS has a membership value, which indicates the degree of an event 

and has a value between [0,1]. Numerous decision-making issues can be solved with fuzzy sets, 

including medical diagnosis, pattern identification, cluster analysis and many others. Atanassov 

{1} thought up the I-FS (intuitionistic fuzzy set). Each I-FS element has a M-D (membership 

degree) and a N-MD (non-membership degree) in the range [0,1] having sum less than or equal 

to 1. This limit on the total of M-D limits the application of I-FSs. Yeger {13} proposed the 

concept of P-FS (Pythagorean fuzzy set) as an extension of I-FSs. Every element in a P-FS has a 

M-G of ℎ𝐴(𝓈) and a N-MG of  𝑔𝐴(𝓈) with the square sum of these two grades being no more 

than one, (ℎ𝐴(𝓈))
2

+ (𝑔𝐴(𝓈))
2

≥ 1. For instance, if ℎ𝐴(𝓈) = 0.8 and 𝑔𝐴(𝓈) = 0.7 then 

(ℎ𝐴(𝓈))
2

+ (𝑔𝐴(𝓈))
2

= 1.13 > 1. Senapati and Yager {11} then put out the idea of F-FSs 

(fermatean fuzzy sets). A F-FS has the following properties: (𝑟𝑓(𝓈))
3

+ (𝑠𝑓(𝓈))
3

≤ 1. This 

suggests that F-FSs are more powerful than FSs, I-FSs, and P-FSs since they are all confined 

within the space of F-FSs. Torra {12} H-FS (Hesitant fuzzy sets) are described as a function that 

generates a set of membership values for each domain element.  

Various extension of FSs have been discussed based on their need and importance. Some 

important results regarding the operation of I-FSs has been obtained. As we know different 

distance measures have been discussed by numerous researchers for different types of FSs. 

These distance measurements undoubtedly meet the metric’s requirements, and the normalized 

Euclidean distance has certain desirable geometric characteristics. Yet it might not fit as well in 

practice. For instance, consider three I-FS J, K and L in the equation {X = x1}, where J = (1, 0, 0), 

K = (0, 1, 0), and L = (0, 0, 1). If we interpret using the ten-person deciding model, J = (1, 0, 0) 

represents ten people who all are in favor of a candidate; K = (0, 1, 0) denotes ten people who all 

are against him; and L = (0, 0, 1) denotes ten people who all hesitate. So, it makes sense for us to 

assume that J and L differ less from one another than J and K do. But, for the above-described 

Euclidean distance, the distance between J and L is nearly identical to the distance between J and 

K, which does not seem to make sense to us as a result, we offer a broader definition of the 

distance between I-FSs. in this study based on the definition of similarity measure provided by 

Li and Cheng [2] our offered distance was proved more reasonable than Li and cheng.” 

     The remaining part of the paper is organized as follows: Preliminaries and fundamental 

ideas are contained in Section 2. Extension of FSs is specified in Section 3 in terms of their 
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politeness.“Section 4 contains properties of I-FSs, and theorem proofs are found in Section 5. A 

distance measure between I-FS is introduced in Section 6, including new distance measure with 

a numerical example, and Section 7 contains a conclusion. 

2. Preliminaries and Basic Concepts 

2.1 Definition 

A Fuzzy Set (FS) {15}E in S is an ordered pair set if 𝓈 is  group of elements denoted generally 

by   𝐸 =  {(𝓈, 𝜇 𝐸(𝓈)) | 𝓈 ∈ 𝑆}, where 𝜇 𝐸(𝓈) is called membership function(M-F) and its value 

lies in closed interval [0,1]. 

2.2 Definition 

T2FS, {8} An extension of ordinary FS that is T1FS and is characterized by Type-2 M-F 

μ𝑧(𝓈, 𝑢). Let S be a fixed universe a T2FS 𝑧 ⊆ S which is interpreted mathematically as 𝑍 =

(𝓈, 𝑢, 𝜇 𝑍(𝓈, 𝑢 ) ) | 𝓈 ∈ 𝑆, 𝑢 ∈ 𝑗 𝓈  ⊆ [0,1]. in which 0 ≤ 𝜇 𝑍(𝓈, 𝑢)  ≤ 1   It can also be written 

as 

𝑍 = ∫ μ𝑍(𝓈)/𝓈  | 𝓈 ∈ 𝑆, 𝑢 ∈ 𝑗𝓈 ⊆ [0,1]
𝓈∈𝑆

 = ∫ [∫ (𝑔𝓈(𝑢)/𝑢)
𝑢∈𝑗𝓈

] /𝓈
𝓈∈𝑆

 

where μ𝑍(𝓈) = ∫ (𝑔𝓈(𝑢)/𝑢)
𝑢∈𝑗𝓈

  is the M-G,  𝑔𝓈(𝑢) = μ𝑍(𝓈, 𝑢) named as secondary M-F where  

𝜇𝑍 is primary M-F of Z and 𝑗𝑠  is called Primary M-F of 𝓈. 

2.3 Definition 

FOU (Footprint of Uncertainty) {10} for T2FS we are having 3-D structure which becomes very 

difficult for calculation, so we take the base of 3rd dimension to calculate the values which is 

called FOU. It can be defined as the union of all Primary M-Fs that is  𝐹𝑂𝑈(𝑍) =∪𝓈∈𝑆 (𝑗𝓈). 

3. Extension of Fuzzy sets 

 

A=  [

𝓈11 ⋯ 𝓈1𝑛

⋮ ⋱ ⋮
𝓈𝑚1 ⋯ 𝓈𝑚𝑛

]   where 𝓈𝑖𝑗 represents evaluation of alternatives 𝐴𝑖 under criteria 

𝑘𝑗.For a decision-making problem we have  

A: Objective.” 

B: Criteria (𝑘𝑗). 

C: Alternatives (𝐴𝑖). 



58 | P a g e  

 

 IJRTS Journal of Research | 2347-6117 | Volume 24 | Issue 01 | Version 1.5 | Jan-Jun 2023   

3.1 Definition  

Intuitionistic Fuzzy set, if a person is representing the ratio of  𝓈𝑖𝑗 in terms of M-D and the 

N-MD pair. An object of the following form is what Atanassov {1} defines as an I-FS J in S. 

𝑀 = {𝓈, 𝜇𝐽(𝓈), 𝜈𝐽(𝓈): 𝓈 ∈ 𝑆, } 

where 𝜇𝐽(𝓈) ∈ [0,1] 𝑎𝑛𝑑 𝜈𝐽(𝓈) ∈ [0,1]} is called as M-D and N-MD respectively such that  0 ≤

μ𝐽(𝓈) + ν𝐽(𝓈) ≤ 1∀𝓈 ∈ 𝑆. 

3.2 Definition  

Interval“valued I-FS; If an expert gives his decision value of 𝓈𝑖𝑗 in terms of interval [L.U] {1} 

introduced IVIF. Let a set S be fixed, an IVIFS J over S Is an object having the form 𝐽 =

𝓈, μ𝐽
𝑙 (𝓈), μ𝐽

𝑢(𝓈), ν𝐽
𝑙 (𝓈), ν𝐽

𝑢(𝓈) where (𝜇𝐽
𝑙 (𝓈), 𝜇𝐽

𝑢(𝓈))  ⊏  [0,1] and ν𝐽
𝑙 (𝓈), ν𝐽

𝑢(𝓈) ⊏  [0,1] under the 

constraint  μ𝐽
𝑢(𝓈) + ν𝐽

𝑢(𝓈) ≤ 1. 

3.3 Definition  

Hesitant FS: Tora v {12} extended the concept of I-FS to hesitant FS which permits the M-D a 

discrete set of [0, 1]. If a person rates the value of 𝓈𝑖𝑗  = 0.5, 0.6, 0.55 Let P be a reference set, 

then we describe hesitant FS on S in terms of function h that when applied to S yields a subset of 

[0,1] 𝐸 = 𝓈, ℎ𝐸(𝓈); 𝓈 ∈ 𝑆 they consider only agree Nance that is why we feel need of dual 

hesitant fuzzy set. 

3.4 Definition  

A dual hesitant FS is a type of FS that is defined using two different functions to determine the 

M-D and N-MD for every set's element. These functions provide two sets of values, one as M-D 

and another as N-MD, which can be used to represent the degree of uncertainty or hesitation 

associated with each element's membership in the set. Given a fixed set P, a dual hesitant FS α 

on P is interpreted as. α = (𝑝, ℎ(𝑝), 𝑔(𝑝)); 𝑝 ∈ 𝑃) 

in which ℎ(𝑝) 𝑎𝑛𝑑 𝑔(𝑝) are two sets of some values in [0,1] signifying the possible M-D and N-

MD of the element p ∈ P   to the set α, respectively, under the constraint  0 ≤ γ, θ ≤ 1: 0 ≤

γ+ + θ+ ≤ 1. Where γ+𝑎𝑛𝑑 θ+ denotes the maximum of degree of agree Nance and degree of 

disagree Nance.” 

3.5 Definition  
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P-FS: If someone give“rating of  𝓈𝑖𝑗  as (0.7, 0.4) which is not less than 1 then we use P-FS 

introduced by {13}. Let S be a universe of discourse (UOD), a P-FS in S is given by𝐸 =

(𝓈, ℎ𝐸(𝓈), 𝑔𝐸(𝓈); 𝓈 ∈ 𝑆) where ℎ𝐸 , 𝑔𝐸: 𝓈 → [0,1] are M-D and N-MD with condition  

(ℎ𝐸(𝓈))
2

+ (𝑔𝐸(𝓈))
2

≤ 1 for all 𝓈 in S, the degree of indeterminacy is given by 𝛾𝐸(𝓈) =

√1 − (ℎ𝐸(𝓈))
2

− (𝑔𝐸(𝓈))
2
 For connivance zhang and Xu {13} called  ℎ𝐸(𝓈), 𝑔𝐸(𝓈) a P-F 

number and is represented as 𝐸 = (ℎ𝐸 , 𝑔𝐸). 

3.6 Definition  

Hesitant Pythagorean fuzzy set (HPFS); introduced by {7} defined as 

𝐸 = {(𝓈, ℎ(𝓈), 𝑔(𝓈))}; 𝓈 ∈ 𝑆 with condition 0 ≤ 𝛾, 𝜃 ≤ 1: 0 ≤ (𝛾+)2 + (𝜃+)2 ≤ 1∀𝓈 ∈ 𝑆, 𝛾 ∈

ℎ(𝓈), 𝜃 ∈ 𝑔(𝓈). 

3.7 Definition  

Linguistic Pythagorean fuzzy set (LPFS); if someone has to say about linguistic behavior for 

example beauty, we can't say 70 percent or 80 percent beautiful here we use terms like more 

beautiful very beautiful etc. LPFS was introduced by {5} is defined as 𝐸 = {𝑆, ℎ𝐸(𝓈), 𝑔𝐸(𝓈); 𝓈 ∈

𝑆} where ℎ𝐸 , 𝑔𝐸 represents linguistic M-D and N-MD respectively with condition  (ℎ2 + 𝑔2 ≤

𝑡2). 

3.8 Definition  

Single valued neutrosophic fuzzy set (SVNFS);{4} In this set we have indeterminacy factor as 

well and is defined as 𝐸 =  {𝑆, ℎ𝐸(𝓈), 𝑔𝐸(𝓈), 𝑖𝐸(𝓈); 𝓈 ∈ 𝑆} with condition ℎ𝐸 , 𝑔𝐸 , 𝑖𝐸 ∈ [0,1] and 

0 ≤ ℎ𝐸 + 𝑔𝐸 + 𝐼𝐸 ≤ 3 for each 𝓈 in S. Here ℎ𝐸(𝓈), 𝑔𝐸(𝓈), 𝑖𝐸(𝓈) represents M-D, N-MD, and 

indeterminacy. If a person says 0.5\% is true, 0.7\% not true and 0.2\% is not sure here not sure 

part is only taken into consideration in neutrosophic set. 

3.9 Definition  

Fermatean fuzzy set; when someone provides a pair (𝑟𝑓(𝓈), 𝑠𝑓(𝓈)) as the M-D and N-MD like 

(0.9, 0.6) then the condition of I-FS and P-FS are not satisfied.” 

(0.9) + (0.6) > 1, (0.9)2 + (. 6)2 > 1, however, it satisfies the condition 

(0.9)3 + (. 6)3 ≤ 1 So F-FSs are here good to control it introduced by {11}. Let S be the UOD 

and F be the fermatean set defined as  

𝐹 = {(𝓈, 𝑟𝐹(𝓈), 𝑠𝐹(𝓈)); 𝓈 ∈ 𝑆} with condition 0 ≤ (𝑟𝐹(𝓈))
3

+ (𝑠𝐹(𝓈))
3

≤ 1. 
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Also 𝑖𝐹(𝓈) = √1 − (𝑟𝐹(𝓈))
3

− (𝑠𝐹(𝓈))
33

  is identified as“degree indeterminacy. 

4 Properties of Intuitionistic Fuzzy set operators 

Operators of I-FSs {2,3,6,9}, For Every two I-FSs U and V The following Operations and 

Relations can be defined as Let 𝜇𝑢(𝓈), 𝜇𝑣(𝓈)be the degree of membership and ᴧ𝑢(𝓈), ᴧ𝑣(𝓈), are 

degree of non-membership of fuzzy set U and V respectively than we define  

Max Operator as   

• 𝑈 + 𝑉 = {max(𝜇𝑢(𝓈), 𝜇𝑣(𝓈)) , min(ᴧ𝑢(𝓈), ᴧ𝑣(𝓈))} 

• 𝑈 ∗ 𝑉 = {min (𝜇𝑢(𝓈), 𝜇𝑣(𝓈)), max (ᴧ𝑢(𝓈), ᴧ𝑣(𝓈))} 

 

Algebraic Operator 

• 𝑈 ⊕ 𝑉 = (𝜇𝑢(𝓈) + 𝜇𝑣(𝓈) − 𝜇𝑢(𝓈) 𝜇𝑣(𝓈), ᴧ𝑢(𝓈)ᴧ𝑣(𝓈)) 

• 𝑈 ⊗ 𝑉 = ( 𝜇𝑢(𝓈)𝜇𝑣(𝓈), ᴧ𝑢(𝓈) + ᴧ𝑣(𝓈) − ᴧ𝑢(𝓈)ᴧ𝑣(𝓈)) 

Einstein Operator  

• 𝑈 ⊞ 𝑉 =
μu(𝓈)+μ𝑣(𝓈)

1+𝜇u(𝓈)𝜇𝑣(𝓈)
 ,

2ᴧu(𝓈)ᴧv(𝓈)

(2−ᴧ𝑢(𝓈))(2−ᴧ𝑣(𝓈))+(ᴧ𝑢(𝓈)ᴧ𝑣(𝓈))
 

• 𝑈 ⊠ 𝑉 =
2𝜇𝑢(𝓈) 𝜇𝑣(𝓈)

(2−𝜇u(𝓈))(2−𝜇v(𝓈))+𝜇𝑢(𝓈)𝜇v(𝓈)
,

ᴧ𝑢(𝓈)+ᴧ𝑣(𝓈)

1+ᴧu(𝓈)ᴧ𝑣(𝓈)
 

4.1 Proof of theorems  

Let U, V and W be three Intuitionistic fuzzy sets, 𝜇𝑢(𝓈), 𝜇𝑣(𝓈) 𝑎𝑛𝑑 𝜇𝑤(𝓈)   

ᴧ𝑢(𝓈), ᴧ𝑣(𝓈) 𝑎𝑛𝑑 ᴧ𝑤(𝓈) be the corresponding membership and non-membership 

respectively. 

Theorem 4.1” 

𝐔 ∪ (𝐕 ∩ 𝐖) = (𝐔 ∪ 𝐕) ∩ (𝐔 ∪ 𝐖) 

𝐿𝐻𝑆 = (𝜇𝑢(𝓈), ᴧ𝑢(𝓈))  ∪ (𝑚𝑖𝑛 (𝜇𝑣(𝓈), 𝜇𝑤(𝓈)), max(ᴧ𝑣(𝓈), ᴧ𝑤(𝓈))  

            Let 𝜇𝑢(𝓈) < 𝜇𝑣(𝓈) < 𝜇𝑤(𝓈) and  ᴧ𝑢(𝓈) < ᴧ𝑣(𝓈)  <  ᴧ𝑤(𝓈) then. 

= (𝜇𝑢(𝓈), ᴧ𝑣(𝓈)) ∪ (𝜇𝑣(𝓈), ᴧ𝑤(𝓈)) 

   = max(𝜇𝑢(𝓈), 𝜇𝑣(𝓈)) , min (ᴧ𝑢(𝓈), ᴧ𝑤(𝓈)) = (𝜇𝑣(𝓈), , ᴧ𝑢(𝓈)). . . . . . . . . 𝟏 
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𝑅𝐻𝑆 = (𝑈 ∪ 𝑉) ∩ (𝑈 ∪ 𝑉) 

= {max(𝜇𝑢(𝓈), 𝜇𝑣(𝓈)) , min(ᴧ𝑢(𝓈), ᴧ𝑣(𝓈))} ∩ {max(𝜇𝑢(𝓈), 𝜇𝑤(𝓈)) , min(ᴧ𝑢(𝓈), ᴧ𝑤(𝓈))}  . 

= (𝜇𝑣(𝓈), ᴧ𝑢(𝓈)) ∩ (𝜇𝑤(𝓈), ᴧ𝑢(𝓈)) 

= {min(μv(𝓈), μw(𝓈)), max(ᴧu(𝓈), ᴧu(𝓈))} =  (𝜇𝑣(𝓈), ᴧ𝑢(𝓈))  … … … 𝟐 

So, from“1 and 2 us proved intuitionistic fuzzy sets are distributive in nature. 

Theorem 4.2  

𝐔 ∩ (𝐕 ∪ 𝐖) = (𝐔 ∩ 𝐕) ∪ (𝐔 ∩ 𝐖) 

Similarly, we can prove the result as proved in theorem 1. 

Theorem 4.3  

𝐔 ⊗ 𝐕 ⊑  𝐔 ⊕ 𝐕 

𝑈 ⊗ 𝑉 = 𝜇𝑢(𝓈), 𝜇𝑣(𝓈), ᴧ𝑢(𝓈) + ᴧ𝑣(𝓈) − ᴧ𝑢(𝓈), ᴧ𝑣(𝓈) 

𝑈 ⊕ 𝑉 = (𝜇𝑢(𝓈) + 𝜇𝑣(𝓈) − 𝜇𝑢(𝓈) 𝜇𝑣(𝓈), ᴧ𝑢(𝓈)ᴧ𝑣(𝓈)) 

                    Assume that  𝜇𝑢(𝓈)𝜇𝑣(𝓈)  ≤ 𝜇𝑢(𝓈) + 𝜇𝑣(𝓈) − 𝜇𝑢(𝓈) 𝜇𝑣(𝓈) 

⇒ 𝜇𝑢(𝓈)𝜇𝑣(𝓈) − 𝜇𝑢(𝓈) − 𝜇𝑣(𝓈) + 𝜇𝑢(𝓈)𝜇𝑣(𝓈) ≤ 𝟎  

⟹  𝜇𝑢(𝓈) + 𝜇𝑣(𝓈) − 𝜇𝑢(𝓈)𝜇𝑣(𝓈) − 𝜇𝑢(𝓈)𝜇𝑣(𝓈) ≥ 0 

⟹  𝜇𝑢(𝓈)(1 − 𝜇𝑣(𝓈)) + 𝜇𝑣(𝓈) (1 − 𝜇𝑢(𝓈)) ≥ 0 

                         Which is true as 0 ≤ 𝜇𝑢(𝓈) ≤ 1 𝑎𝑛𝑑 0 ≤ 𝜇𝑣(𝓈) ≤ 1. 

Similarly, ᴧ𝑢(𝓈)ᴧ𝑣(𝓈) ≤ ᴧ𝑢(𝓈) + ᴧ𝑣(𝓈) − ᴧ𝑢(𝓈)ᴧ𝑣(𝓈) 

⟹ ᴧ𝑢(𝓈) + ᴧ𝑣(𝓈) − ᴧ𝑢(𝓈)ᴧ𝑣(𝓈) − ᴧ𝑢(𝓈)ᴧ𝑣(𝓈)  ≥ 0 

⟹  ᴧ𝑢(𝓈)(1 − ᴧ𝑣(𝓈)) + ᴧ𝑣(𝓈)(1 − ᴧ𝑢(𝓈))  ≥ 0   

which is true as  0 ≤ ᴧ𝑢(𝓈) ≤ 1 𝑎𝑛𝑑 0 ≤ ᴧ𝑣(𝓈) ≤ 1 

Hence 𝑈 ⊗ 𝑉 ⊑  𝑈 ⊕ 𝑉  

Theorem 4.4” 

𝐔 ⊕ 𝐔 ⊇ 𝐔 
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𝜇𝑢(𝓈) + 𝜇𝑢(𝓈) − 𝜇𝑢(𝓈)𝜇𝑢(𝓈), ᴧ𝑢(𝓈)ᴧ𝑢(𝓈) 

⟹ 2𝜇𝑢(𝓈) − (𝜇𝑢(𝓈))
2

, (ᴧ𝑢(𝓈))
2

    

⟹  2𝜇𝑢(𝓈) − (𝜇𝑢(𝓈))
2

= 𝜇𝑢(𝓈) + 𝜇𝑢(𝓈)(1 − 𝜇𝑢(𝓈)) ≥ 𝜇𝑢(𝓈) 

                     And (ᴧ𝑢(𝓈))
2

≤ ᴧ𝑢(𝓈), hence U ⊕ U ⊇ U. 

                     Similarly, we can prove   𝑈 ⊗ 𝑈 ⊆ 𝑈. 

Theorem“4.5 

(𝐔)(𝐂)𝐂 = 𝐔 

𝑈 = (𝜇𝑢(𝓈), ᴧ𝑢(𝓈)) 

𝑈𝐶 = (ᴧ𝑢(𝓈), 𝜇𝑢(𝓈)) 

(𝑈)(𝐶)𝐶 = (𝜇𝑢(𝓈), ᴧ𝑢(𝓈)) 

Theorem 4.6 

(𝑼 ∪ 𝑽)𝑪 = 𝑼𝑪 ∩ 𝑽𝑪 

LHS = (max(𝜇𝑢(𝓈), 𝜇𝑣(𝓈)), min(ᴧ𝑢(𝓈), ᴧ𝑣(𝓈))) 
𝐶
 

= min(ᴧ𝑢(𝓈), ᴧ𝑣(𝓈)), max(𝜇𝑢(𝓈), 𝜇𝑣(𝓈)) … … … … . .1  

𝑅𝐻𝑆 = 𝑈𝐶 ∩ 𝑉𝐶 = (ᴧ𝑢(𝓈), 𝜇𝑢(𝓈)) ∩ (ᴧ𝑣(𝓈), 𝜇𝑣(𝓈)) 

= min(ᴧ𝑢(𝓈), ᴧ𝑣(𝓈)) , max(𝜇𝑢(𝓈), 𝜇𝑣(𝓈)) … … … … 2 

Hence from 1 and 2 LHS =RHS. 

Similarly, we can prove. 

Theorem 4.7 

(𝐔 ∩ 𝐕)𝐂 = 𝐔𝐂 ∪ 𝐕𝐂 

Theorem 4.8” 

𝐔 ⊕ (𝐕 ∪ 𝐖) = (𝐔 ⊕ 𝐕) ∪ (𝐔 ⊕ 𝐖) 

𝐿𝐻𝑆 = {(𝜇𝑢(𝓈), ᴧ𝑢(𝓈)) ⊕ (𝜇𝑣(𝓈), ᴧ𝑣(𝓈)) ∪ (𝜇𝑤(𝓈), ᴧ𝑤(𝓈))}  
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= {(𝜇𝑢(𝓈), ᴧ𝑢(𝓈)) ⊕ (max(𝜇𝑣(𝓈), 𝜇𝑤(𝓈)) , min(ᴧ𝑣(𝓈), ᴧ𝑤(𝓈)))} 

= {(𝜇𝑢(𝓈), ᴧ𝑢(𝓈))  ⊕ (𝜇𝑤(𝓈), ᴧ𝑣(𝓈))} 

= {𝜇𝑢(𝓈) + 𝜇𝑤(𝓈) − 𝜇𝑢(𝓈)𝜇𝑤(𝓈), ᴧ𝑢(𝓈)ᴧ𝑣(𝓈)} … … .1 

𝑅𝐻𝑆 = {𝜇𝑗(𝓈) + 𝜇𝑘(𝓈) − 𝜇𝑗(𝓈)𝜇𝑘(𝓈), ᴧ𝑗(𝓈)ᴧ𝑘(𝓈)}

∪ {𝜇𝑢(𝓈) + 𝜇𝑤(𝓈) − 𝜇𝑢(𝓈)𝜇𝑤(𝓈), ᴧ𝑢(𝓈)ᴧ𝑤(𝓈)}  

Assume“that  𝜇𝑢(𝓈) < 𝜇𝑣(𝓈) < 𝜇𝑤(𝓈) and  ᴧ𝑢(𝓈) < ᴧ𝑣(𝓈)  <  ᴧ𝑤(𝓈) then. 

max(𝜇𝑢(𝓈) + 𝜇𝑣(𝓈) − 𝜇𝑢(𝓈)𝜇𝑣(𝓈), 𝜇𝑢(𝓈) + 𝜇𝑤(𝓈)

− 𝜇𝑢(𝓈)𝜇𝑤(𝓈)) , min{(ᴧ𝑢(𝓈)ᴧ𝑣(𝓈)) , (ᴧ𝑢(𝓈)ᴧ𝑤(𝓈))}  

= {𝜇𝑢(𝓈) + 𝜇𝑤(𝓈) − 𝜇𝑢(𝓈)𝜇𝑤(𝓈), ᴧ𝑢(𝓈)ᴧ𝑣(𝓈)} … … … … … 2 

From 1 and 2 we proved the result. 

Similarly, we can prove.  

Theorem 4.9 

𝑈 ∪ (𝑉 ⊕ W) = (U ∪ V) ⊕ (U ∪ W) 

Theorem 4.10 

𝐔 ⊞ (𝐕 ∪ 𝐖) = (𝐔 ⊞ 𝐕) ∪ (𝐔 ⊞ 𝐖) 

𝐿𝐻𝑆 = (𝜇𝑈(𝓈), ᴧ𝑈(𝓈)) ⊞ (max(𝜇𝑉(𝓈), 𝜇𝑊(𝓈)), min(ᴧ𝑉(𝓈), ᴧ𝑊(𝓈))) 

                                 Assume that  𝜇𝑈(𝓈) < 𝜇𝑉(𝓈) < 𝜇𝑊(𝓈) and  ᴧ𝑈(𝓈) < ᴧ𝑉(𝓈)  <  ᴧ𝑊(𝓈) 

then. 

= (𝜇𝑈(𝓈), ᴧ𝑈(𝓈)) ⊞ (𝜇𝑊(𝓈), ᴧ𝑉(𝓈)) 

=
𝜇𝑈(𝓈) + 𝜇𝑊(𝓈)

1 + 𝜇𝑈(𝓈)𝜇𝑊(𝓈)
,

2ᴧ𝑈(𝓈)ᴧ𝑉(𝓈)

(2 − ᴧ𝑈(𝓈))(2 − ᴧ𝑉(𝓈)) + ᴧ𝑈(𝓈)ᴧ𝑉(𝓈)
… … … … … … .1 

𝑅𝐻𝑆 = (𝜇𝑈(𝓈), ᴧ𝑈(𝓈)) ⊞ (𝜇𝑉(𝓈), ᴧ𝑉(𝓈)) ∪ (𝜇𝑈(𝓈), ᴧ𝑈(𝓈)) ⊞ (𝜇𝑊(𝓈), ᴧ𝑊(𝓈)) 

{=
𝜇𝑈(𝓈)+𝜇𝑉(𝓈)

1+𝜇𝑈(𝓈)𝜇𝑉(𝓈)
,

2ᴧ𝑈(𝓈)ᴧ𝑉(𝓈)

(2−ᴧ𝑈(𝓈))(2−ᴧ𝑉(𝓈))+ᴧ𝑈(𝓈)ᴧ𝑉(𝓈)
} ∪ {

𝜇𝑈(𝓈)+𝜇𝑊(𝓈)

1+𝜇𝑈(𝓈)𝜇𝑊(𝓈)
,

2ᴧ𝑈(𝓈)ᴧ𝑊(𝓈)

(2−ᴧ𝑈(𝓈))(2−ᴧ𝑊(𝓈))+ᴧ𝑈(𝓈)ᴧ𝑊(𝓈))
}” 

= max (
μ𝑈(𝓈) + μ𝑉(𝓈)

1 + μ𝑈(𝓈)μ𝑉(𝓈)
,

μ𝑈(𝓈) + μ𝑊(𝓈)

1 + μ𝑈(𝓈)μ𝑊(𝓈)
), 
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min (
2ᴧ𝑈(𝓈)ᴧ𝑉(𝓈)

(2 − ᴧ𝑈(𝓈))(2 − ᴧ𝑉(𝓈)) + ᴧ𝑈(𝓈)ᴧ𝑉(𝓈)
,

2ᴧ𝑈(𝓈)ᴧ𝑊(𝓈)

(2 − ᴧ𝑈(𝓈))(2 − ᴧ𝑊(𝓈)) + ᴧ𝑈(𝓈)ᴧ𝑊(𝓈)
) 

𝐿𝑒𝑡𝜇𝑈(𝓈) < 𝜇𝑉(𝓈) < 𝜇𝑊(𝓈) and  ᴧ𝑈(𝓈) < ᴧ𝑉(𝓈)  <  ᴧ𝑊(𝓈) then  

=
𝜇𝑈(𝓈) + 𝜇𝑊(𝓈)

1 + 𝜇𝑈(𝓈)𝜇𝑊(𝓈)
,

2ᴧ𝑈(𝓈)ᴧ𝑉(𝓈)

(2 − ᴧ𝑈(𝓈))(2 − ᴧ𝑉(𝓈)) + ᴧ𝑈(𝓈)ᴧ𝑉(𝓈)
… … … … … .2 

From 1“and 2 result is proved  

Similarly, we can prove. 

Theorem 4.11 

𝐔 ∪ (𝐕 ⊕ 𝐖) = (𝐔 ∪ 𝐕) ⊕ (𝐔 ∪ 𝐖) 

 

5 Distance measure between I-FSs 

Since distance measure refers to the distinction between I-FSs, it is conceivable to consider it as 

a parallel concept to similarity measure. Due to the wide range of real-world applications, they 

provide, such as pattern identification, machine learning, decision-making, and market 

forecasting, distance measurements between I-FS, a key notion in fuzzy mathematics, are also 

attracting a lot of attention. Many distance measurements between I-FSs have been presented 

and researched in recent years. The following distance measures were put out by szmidt and 

kacprzyk {17} between J and K: 

 

• Hamming Distance. 

 

dH(J, K) =
1

2
∑{|uj(tj) − uK(tj)|

𝑛

𝑗=1

+ |gtj(uj) − gtj(uk)| + |ϕ𝑗(tj) − ϕ𝐾(tj)| 

 

• Normalized Hamming Distance.” 
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dH(J, K) =
1

2n
∑{|uj(tj) − uK(tj)|

n

j=1

+ |gtj(uj) − gtj(uk)| + |ϕj(tj) − ϕK(tj)| 

• Euclidean“distance. 

𝑑𝐸(𝐽, 𝐾) = {
1

2
∑|𝑢𝐽(𝑡𝑗) − 𝑢𝐾(𝑡𝑗)|

2
𝑛

𝑗=1

+ |𝑔𝑡𝑗(𝑢𝐽) − 𝑔𝑡𝑗(𝑢𝑘)|
2

+ |ϕ𝐽(𝑡𝑗) − ϕ𝐾(𝑡𝑗)|
2

}1/2 

• Normalized Euclidean distance. 

𝑑𝐸(𝐽, 𝐾) = {
1

2n
∑|𝑢𝐽(𝑡𝑗) − 𝑢𝐾(𝑡𝑗)|

2
𝑛

𝑗=1

+ |𝑔𝑡𝑗(𝑢𝐽) − 𝑔𝑡𝑗(𝑢𝑘)|
2

+ |𝜙𝐽(𝑡𝑗) − 𝜙𝐾(𝑡𝑗)|
2

}1/2 

These distance measurements undoubtedly meet the metric's requirements, and the normalized 

Euclidean distance has certain desirable geometric characteristics. Yet it might not fit as well in 

practice. For instance, consider three I-FS J, K and L in the equation X = x1  , where J = (1, 0, 

0), K = (0, 1, 0), and L = (0, 0, 1). If we interpret using the ten-person deciding model, J = (1, 0, 

0) represents ten people who are in favor of a candidate; K = (0, 1, 0) denotes ten people who 

all are against him; and L = (0, 0, 1) represents ten people who all hesitate. So, it makes sense 

for us to assume that J and L differ less from one another than J and K do. But, for the above-

described Euclidean distance, the distance between J and L is nearly identical to the distance 

between J and K, which does not seem to make sense to us. As a result, we provide a more 

broad definition of distance measure between I-FSs in this study based on the definition of 

similarity measure provided by Li and Cheng {18} and was proved more reasonable than Li 

and Cheng. 

 

5.1 New distance measure between I-FSs” 

For convenience, two IFSs J and K in S are denoted by 𝐽 = {𝑠, 𝑢𝐽(𝑠) , ѵ𝐽(𝑠) | 𝑠 𝜖 𝑆 and  𝐾 =

{𝑠, 𝑢𝑘(𝑠) , ѵ𝑘(𝑠) | 𝑠 𝜖 𝑆  then we defined new distance for J and K by considering M-F and N-

MF. 

 

𝑑1(𝐽, 𝐾) =
1

𝑛
∑

|μ𝐽(𝑠𝑖) − μ𝐾(𝑠𝑖)| + |ν𝐽(𝑠𝑖) − ν𝐾(𝑠𝑖)|

4

𝑛

𝑖=1

            

+
𝑚𝑖𝑛(|𝜇𝐽(𝑠𝑖) − 𝜇𝐾(𝑠𝑖)|, |𝜈𝐽(𝑠𝑖) − 𝜈𝐾(𝑠𝑖)|)

2
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5.1 “Definition 

 

A real function  𝑑: 𝐹𝐼(𝑠) × 𝐹𝐼(𝑠) → [0,1]  is said to be a distance measure, if d satisfies the 

following axioms: 

 

(A)     0 ≤ 𝑑(𝐽, 𝐾) ≤ 1, ∀(𝐽, 𝐾) ∈ 𝐹𝐼(𝑠) 

(B)      𝑑(𝐽, 𝐾) = 0, 𝐼𝐹  𝐽 = 𝐾 

(C)     𝑑(𝐽, 𝐾) = 𝑑(𝐾, 𝐽) 

(D)    𝐼𝑓𝐸 ⊆ 𝐾 ⊆ 𝐿 where𝐽, 𝐾, 𝐿 ∈ 𝐹𝐼(𝑠),then 𝑑(𝐽, 𝐿) ≥ 𝑑(𝐽, 𝐾) and 𝑑(𝐽, 𝐿) ≥ 𝑑(𝐾, 𝐿). 

Now we will prove the above defined measure is a valid distance measure for I-FS. 

 

 

(𝐴)       0 ≤ 𝑑1(𝐽, 𝐾) ≤ 1 

 

Let J and K be two I-FS then we have. 

|μJ(si) − μK(si)| ≥ 0 

|ν𝐽(𝑠𝑖) − ν𝐾(𝑠𝑖)| ≥ 0 

⟹  𝑑2(𝐽, 𝐾) ≥ 0 

then we have  |μ𝐽(𝑠𝑖) − μ𝐾(𝑠𝑖)| ≤ 1  and |ν𝐽(𝑠𝑖) − ν𝐾(𝑠𝑖)| ≤ 1 

 

⇒  𝑑1(𝐽, 𝐾) ≤ 1  hence  0 ≤ 𝑑1(𝐽, 𝐾) ≤ 1. 

 

(B) Holds trivially. 

Now we will prove for (C) and (D). 

(𝐶)  ⇒     𝑑1(𝐽, 𝐾) = 𝑑1(𝐾, 𝐽) 

we have” 
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𝑑1(𝐽, 𝐾) =  
1

𝑛
∑

|μ𝐽(𝑠𝑖) − μ𝐾(𝑠𝑖)| + |ν𝐽(𝑠𝑖) − ν𝐾(𝑠𝑖)|

4

𝑛

𝑖=1

    

+    
𝑚𝑖𝑛|𝜇𝐽(𝑠𝑖) − 𝜇𝐾(𝑠𝑖)|, |𝜈𝐽(𝑠𝑖) − 𝜈𝐾(𝑠𝑖)|

2
 

 

=      
1

𝑛
∑

|μ𝐾(𝑠𝑖) − μ𝐽(𝑠𝑖)| + |ν𝐾(𝑠𝑖) − ν𝐽(𝑠𝑖)|

4

𝑛

𝑖=1

+
𝑚𝑖𝑛|μ𝐾(𝑠𝑖) − μ𝐽(𝑠𝑖)|, |ν𝐾(𝑠𝑖) − ν𝐽(𝑠𝑖)|

2
 

= 𝑑1(𝐾, 𝐽) 

 

⇒  𝑑1(𝐽, 𝐾) = 𝑑1(𝐾, 𝐽) 

Now“to prove (D) 

𝑑1(𝐽, 𝐿) ≥ 𝑑1(𝐽, 𝐾) 

it can be easily seen that. 

 

|μ𝐽(𝑠𝑖) − μ𝐿(𝑠𝑖)| ≥ |μ𝐽(𝑠𝑖) − μ𝐾(𝑠𝑖)| 

And  

|ν𝐽(𝑠𝑖) − ν𝐿(𝑠𝑖)| ≥ |ν𝐽(𝑠𝑖) − ν𝐾(𝑠𝑖)| 

so, we have 

 

1

𝑛
∑

|μ𝐽(𝑠𝑖) − μ𝐿(𝑠𝑖)| + |ν𝐽(𝑠𝑖) − ν𝐿(𝑠𝑖)|

4

𝑛

𝑖=1

+
𝑚𝑖𝑛|μ𝐽(𝑠𝑖) − μ𝐿(𝑠𝑖)|, |ν𝐽(𝑠𝑖) − ν𝐿(𝑠𝑖)|

2
 

 

≥
1

𝑛
∑

|μ𝐽(𝑠𝑖) − μ𝐾(𝑠𝑖)| + |ν𝐽(𝑠𝑖) − ν𝐾(𝑠𝑖)|

4

𝑛

𝑖=1

+
𝑚𝑖𝑛|μ𝐽(𝑠𝑖) − μ𝐾(𝑡𝑖)|, |ν𝐽(𝑠𝑖) − ν𝐾(𝑠𝑖)|

2
 

A” 
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then“we get inequality 𝑑1(𝐽, 𝐿) ≥ 𝑑1(𝐽, 𝐾) similarly we can prove  d1(J, L) ≥ d1(K, L) hence 

satisfies condition (D), so we proved this is a valid distance measure for I-FSs. 

5.2 Numerical example for pattern recognition 

5.3 Example  

Let's consider a pattern recognition problem regarding the classification of industrial materials. 

Every material is represented by intuitionistic fuzzy sets  I1, I2, I3, I4, I5  in the feature space   

T = {t1, t2, … , t6} (see table 1). We have one unknown industrial material M. Our purpose is to 

clarify to which class this unknown material belongs. From the data given in table 1 we have 

following results for d1(P, Q). 

Table 1 

 

 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 

𝜇𝐼1(𝑡) 0.739 0.033 0.188 0.492 .020 0.739 

𝜈𝐼1(𝑡) 0.125 0.818 0.626 0.358 0.628 0.125 

𝜇𝐼2(𝑡) 0.124 0.030 0.048 0.136 0.019 0.393 

𝜈𝐼2(𝑡) 0.665 0.825 0.800 0.648 0.823 0.653 

𝜇𝐼3(𝑡) 0.449 0.662 1.000 1.000 1.000 1.000 

𝜈𝐼3(𝑡) 0.387 0.298 0.000 0.000 0.000 0.000 

𝜇𝐼4(𝑡) 0.280 0.521 0.470 0.295 0.188 0.735 

𝜈𝐼4(𝑡) 0.715 0.368 0.423 0.658 0.806 0.118 

𝜇𝐼5(𝑡) 0.326 1.000 0.182 0.156 0.049 0.675 

𝜈𝐼5(𝑡) 0.452 0.000 0.725 0.765 0.896 0.263 

𝜇𝑀(𝑡) 0.629 0.524 0.210 0.218 0.069 0.658 

𝜈𝑀(𝑡) 0.303 0.356 0.689 0.753 0.876 0.256 

 

𝑑1(𝐼1, 𝑀) = 0.199,𝑑1(𝐼2, 𝑀) = 0.238,𝑑1(𝐼3, 𝑀) = 0.470,𝑑1(𝐼4, 𝑀) = 0.147,𝑑1(𝐼5, 𝑀) =

0.109.”                                                        
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The “material M belongs to 𝐼5. Naturally, this conclusion agrees with Liang and Shi's findings 

{17}. But our approach is far better as it contains inclusion relation which is failed for many 

existing measures. 

6 Conclusion 

In conclusion, the study of FS extensions and I-FSs has significantly expanded our ability to 

accurately model and analyze real-world systems that exhibit uncertainty and imprecision. By 

defining various operators and distance metrics, we can manipulate and compare I-FSs, 

enabling more nuanced and comprehensive analysis. The practical applications of these 

extensions and metrics are vast, from decision-making processes to image recognition and data 

compression. With the continued development and implementation of these tools, we can gain 

deeper insights and make more informed decisions in various fields.” 
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