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Abstract 

A ring is a basic structure in abstract algebra and one 

of the building blocks of mathematics. It's a set that 

comes with two binary operations, addition and 

multiplication, that make basic arithmetic more 

flexible. Polynomials, series, matrices, and functions 

are all non-numerical objects that can benefit from the 

application of arithmetic theorems through this 

generalization. The calculation rules for rings are 

outlined in this work. 
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Discussion 

Assume that (𝑅; +,·) is a commutative ring. Let 

𝑎, 𝑏, 𝑐 ∈  𝑅. 

(i) 𝐼𝑓 𝑎 +  𝑏 =  𝑎 +  𝑐 𝑡ℎ𝑒𝑛 𝑏 =  𝑐. 

(ii) 𝐼𝑓 𝑎 +  𝑎 =  𝑎 𝑡ℎ𝑒𝑛 𝑎 =  0. 

(iii) − (−𝑎)  =  𝑎. 

(iv)  0𝑎 =  0. 

(v) − (𝑎𝑏)  =  (−𝑎)𝑏 =  𝑎(−𝑏). 

 Assume in addition that R has an identity 1 

then 

(vi) (−1)𝑎 =  −𝑎. 

(vii) 𝐼𝑓 𝑎 ∈

 𝑅 ℎ𝑎𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑎 −

1 𝑡ℎ𝑒𝑛 𝑎𝑏 =  0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑏 =  0. 

Proof, Very like the do-it-ideal, adage pursuing proofs 

you have just observed, or needed to do, with regards 

to R, or (on account of (i)– (iv)), seen for expansion in 

a vector space.  

Subrings and the Subring Test. [Compare with the 

Subspace Test from LAI] Let (R; +, •) be a ring and let 

S be a non-void subset of R. At that point (S; +, •) is a 

subring of R on the off chance that it is a ring as for the 

operations it acquires from R.  

The Subring Test Let (R; +, •) be a ring and let S ⊆ R. 

At that point (S; +, •) is a subring of R if (and just if) S 

is non-vacant and the accompanying hold:  

(SR1) 𝑎 +  𝑏 ∈  𝑆 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑎, 𝑏 ∈  𝑆;  

(SR2) 𝑎 −  𝑏 ∈  𝑆 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑎, 𝑏 ∈  𝑆;  

(SR3) abdominal muscle ∈ S for any 𝑎, 𝑏 ∈  𝑆.  

Here (SR1) and (SR3) are only the (bop) conditions we 

require for S. (A1), (M1) and (D) are acquired from R. 

The main (∃) sayings are (A2) and (A3). Since S 6= ∅ 

we can pick some c ∈ S. At that point, by (SR2), 0 =

 𝑐 −  𝑐 ∈  𝑆. By (SR2) once more, −𝑎 =  0 −  𝑎 ∈

 𝑆. 

Exercise: demonstrate that if S is a subring of R at that 

point, with an undeniable notation, essentially 0𝑠 =

 0𝑟 and (−𝑎)𝑠 =  (−𝑎)𝑟  
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Precedents  

(1) ℤ and ℚ are subrings of R;  

(2) R, viewed as quantities of the shape 𝑎 + 0𝑖 for 𝑎 ∈ 

𝑅, is a subring of C.  

(3) In the polynomial ring [𝑥], the polynomials of even 

degree from a subring however the polynomials of odd 

degree don't frame a subring in light of the fact that 𝑥 ∗

𝑥 = 𝑥2 isn't of odd degree.  

New rings from old: items and capacities. Results of 

rings Let R1 and R2 be rings. Characterize double 

operations on R1×R2 facilitate astute: 

for 𝑟1, 𝑟′ 1 ∈  𝑅1 and 𝑟2, 𝑟′ 2 ∈  𝑅2, let  

(𝑟1, 𝑟2)  +  (𝑟 ′ 1 , 𝑟′ 2 ) ∶=  (𝑟1 +  𝑟1, 𝑟2 +  𝑟 ′ 2 ), 

(𝑟1, 𝑟2)  ·  (𝑟 ′ 1 , 𝑟′ 2 ) ∶=  (𝑟1 ·  𝑟 ′ 1 , 𝑟2 ·  𝑟 ′ 2 ). 

Consider the ring axioms in two groups:  

Type (∀) axioms (no ∃ quantifier): Associativity of 

addition (A1) and multiplication (M1); Commutativity 

of addition (A4); distributivity (D). All of these hold 

because they hold in each coordinate and the 

operations are defined coordinate wise. Also if 

multiplication is commutative in R1 and R2 then so is 

multiplication in R1 × r2. 

Type (∃) axioms (containing a ∃ quantifier): existence 

of zero (A2) and additive inverses (A3). Here we need 

to exhibit the required elements: (0, 0) serves as zero 

and (−𝑟1, −𝑟2). as the additive inverse of (𝑟1, 𝑟2). Also, 

if R1 and R2 are rings with identity, so is 𝑅1  ×  𝑅2, 

with identity (1, 1).  

Example: R 2 and more generally R n for n > 2 is a 

commutative ring with 1 under the coordinate wise 

operations derived from R. 

Rings of functions: [Lecture example] Let R be a ring 

and X a non-empty set. Denote by RX: = {f: X → R, 

with sum, f + g, and product, ·, defined point wise: 

∀𝑥 ∈  𝑋 (𝑓 +  𝑔) (𝑥)  =  𝑓(𝑥)  +  𝑔(𝑥), 

∀𝑥 ∈  𝑋 (𝑓 ·  𝑔) (𝑥)  =  𝑓(𝑥)  ·  𝑔(𝑥). 

Then RX is a ring, which is commutative (has a 1) if R 

is commutative (has a 1). Many instances of rings can 

be viewed as subrings of rings of the form RX. 

Definition: Let (R, +,.) be a ring. If there is an element 

1 ∈ R such that a.1 = 1.a = a for every a ∈ R, then we 

say that R is a ring with identity (or unit) element. If 

a.b = b.a for all 𝑎, 𝑏 ∈  𝑅, then we say that R is a 

commutative ring. A Boolean ring is a ring which 

satisfies the idempotent law (a.a = a for all a). 

Notation: We write ℤ to denote the set of all integers, 

2ℤ to denote the set of all even integers, ℚ to denote 

the set of all rational numbers, ℝ to denote the set of 

all real numbers and ℤn to denote the set of all integers 

modulo n. 

Examples: (ℤ, +, .) is a commutative ring with identity. 

(2ℤ, +, .) is a commutative ring without identity. (ℚ, +, 

.) is a commutative ring with identity. (ℤn, +, .) is a 

commutative ring with identity. 

A commutative ring is said to be an integral domain if 

it has no ℤero divisors. A ring R is said to be a division 

ring if (R* , .) is a group where R * = R – {0}. 

Definition: An algebraic system (F, +, .) where F is a 

non-empty set and +, . are binary operations, is said to 

be a field if it satisfies the following three conditions: 

i. (F, +) is an Abelian group; 

ii. (F* , .) is a commutative group 

where F* = F - {0}; and 

iii. a(b + c) = ab + ac, (a + b)c = ac 

+ bc for all a, b, c in F. 

In other words, a field is a commutative division ring. 

Example: Let F be the field of real numbers and let R 

be the set of all 2 x 2 matrices (
 𝑎 𝑏
𝑐 𝑑

) where a, b, c, d 

are any real numbers. We define (
𝑎1 𝑏1

𝑐1 𝑑1
) + 

(
𝑎2 𝑏2

𝑐2 𝑑2
) = 

𝑎1 + 𝑎2 𝑏1 + 𝑏2

𝑐1 + 𝑐2 𝑑1 + 𝑑2
  It is easy to verify that 

ℝ forms an Abelian group under addition with  (
0 0
0 0

) 

acting as the ℤero element, and (
−𝑎 −𝑏
−𝑐 −𝑑

) is the 

additive inverse of (
𝑎 𝑏
𝑐 𝑑

).  
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We define the multiplication in ℝ by. (
 𝑎 𝑏
𝑐 𝑑

). 

(
 𝑟 𝑠
𝑡 𝑢

) = (
 𝑎𝑟 + 𝑏𝑡 𝑎𝑠 + 𝑏𝑢
𝑐𝑟 + 𝑑𝑡 𝑐𝑠 + 𝑑𝑢

). 

The element (
1 0
0 1

) acts as the multiplicative identity 

element. It is clear that ℝ forms a ring. 

Since(
1 0
0 0

) . (
0 0
1 0

) =  (
0 0
0 0

), we have that ℝ is 

not an integral domain. 

Since(
1 0
0 0

) . (
0 0
1 0

) =  (
0 0
0 0

) ≠ (
0 0
1 0

) =

 (
0 0
1 0

) . (
1 0
0 0

), we have that ℝ is not a commutative 

ring. 

Example: (ℤ6, +, .) is a commutative ring but not a 

division ring. 

Definition: Let (ℝ, +, .), (ℝ1 , +, .) be two rings. A 

mapping ϕ: ℝ → ℝ1 is said to be a homomorphism (or 

a ring-homomorphism) if it satisfies the following two 

conditions: 

• 𝜙 (𝑎 +  𝑏)  =  𝜙 (𝑎)  +  𝜙 (𝑏);  𝑎𝑛𝑑  

• 𝜙 (𝑎𝑏)  =  𝜙 (𝑎) 𝜙 (𝑏) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝑅. 

Note: For any two rings R and R1 , if we define ϕ: R 

→ R1 by φ(x) = 0 for all x ∈ R, then ϕ is a 

homomorphism. This ϕ is called the ℤero-

homomorphism. 

Definition: Let ϕ: ℝ → ℝ1 be a homomorphism. Then 

the set {x ∈ ℝ / ϕ (x) = 0} is called the kernal of φ and 

is denoted by ker ϕ or I(ϕ). A homomorphism ϕ: R → 

R1 is said to be an isomorphism if ϕ is one-one and 

onto. Two rings ℝ and ℝ1 are said to be isomorphic if 

there exist an isomorphism ϕ: ℝ → ℝ1 . 

Result: If ϕ is homomorphism from a ring ℝ to ℝ1 , 

then ϕ(0) = 0 and ϕ(-a) = -ϕ(a) for all a ∈ R. 

Definition: Let R be a ring and φ ≠ I ⊆ R. Then  

I is said to be a left ideal of R if I is a subgroup of (R, 

+) and ra ∈ I for every r ∈ R, a ∈ I. 

I is said to be a right ideal of R if I is a subgroup of (R, 

+) and ar ∈I for every r ∈ R, a ∈ I. 

I is said to be an ideal (or two sided ideal) of R if I is 

both left and right ideal. For an ideal I of R, the 

quotient ring of R with respect to I is denoted by R/I. 

An ideal I of R is said to be minimal if it is minimal in 

the set of all non-ℤero ideals of R. 

Remark: (i) Let X ⊆ R. The intersection of all ideals 

of R containing X is called the ideal generated by X. It 

is denoted by ‹X›. 

If X = {a}, then we write ‹a› for ‹X›. 

For an element a ∈ R, the ideal is called the principal 

ideal generated by a. 

It is easy to verify that for a ∈ R the following is true: 

 

Example: If ϕ: R → R1 is a homomorphism, then ker 

ϕ is an ideal of R. 

Lemma: Let f: R → R1 be a ring homomorphism. 

If J is an ideal of R, then f(J) = {f(x) / x ∈ J} is an ideal 

of R1 . 

If J1, J2 are ideals of R such that f(J1) and f(J2) are 

equal, and ker f ⊆ J2, then J1 ⊆ J2 and 

If W1 is an ideal of R1 then f-1(W1 ) = {x ∈ R / f(x) ∈ 

W1 } is an ideal of R. 

Definition: Let R be a ring and S ⊆ R. If S is a ring in 

its own rights with respect to the operations on R, then 

S is called a subring of R (equivalently, if (S, +) is a 

subgroup of (R, +) and ab ∈ S for all a, b ∈ S, then S is 

called a subring of R). 

Example: Let R* =  {(
𝑎 𝑏
0 𝑎

)  𝐼𝑎, 𝑏𝜀 𝑅}  where R is 

the set of all real numbers. Then R* is a subring of the 

ring of 2 x 2 matrices over the field of real numbers, 

and I = {(
0 𝑏
0 0

)  𝐼, 𝑏𝜀 𝑅} is an ideal of R*. 

If we define ϕ: R* → ℝ by ϕ (
𝑎 𝑏
0 𝑎

) = a, then ϕ is a 

homomorphism and I = ker ϕ. So R* /I ≅ (image of ϕ) 

= ℝ. 

Example: Let R be any ring with 1 and a ∈ R. Then Ra 

= {xa / x ∈ R} is a left ideal and aR = {ar / r ∈ R}is a 
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right ideal of R. If R is a commutative ring, then Ra = 

aR is an ideal of R. 

Example: If U, V are ideals of R, then the two sets U 

+ V = {a + b / a ∈ U, b ∈ V}; and  

   

are ideals of R. 

If A is a right ideal and B is a left ideal of R, then A ∩ 

B need not be a left (or right) ideal of R. We observe 

this by a suitable example. Let R1 = M2(R) = the ring 

of all 2 x 2 matrices over the set of real numbers ℝ. 

I = ker ϕ. So R* /I ≅ (image of ϕ) = ℝ. 

Example: Let R be any ring with 1 and a ∈ R. Then Ra 

= {xa / x ∈ R} is a left ideal and aR = {ar / r ∈ R}is a 

right ideal of R. If R is a commutative ring, then Ra = 

aR is an ideal of R. 

Example: If U, V are ideals of R, then the two sets U 

+ V = {a + b / a ∈ U, b ∈ V}; and 

 

are ideals of R. 

Example: If A is a right ideal and B is a left ideal of R, 

then A ∩ B need not be a left (or right) ideal of R. We 

observe this by a suitable example. Let R1 = M2(R) = 

the ring of all 2 x 2 matrices over the set of real 

numbers ℝ. 

𝐴 = {(
𝑎 𝑏
0 𝑎

) /𝑎, 𝑏𝜀 𝑅}  𝑎𝑛𝑑 𝐵 = {(
𝑐 0
𝑑 0

) /𝑐, 𝑑𝜀 𝑅}. 

Then A is a right ideal of R and B is a left ideal of R. 

Now A ∩ B= {(
𝑎 𝑏
0 𝑎

) /𝑎 𝜀 𝑅}. Let a ∈ R, a ≠ 0. 

Since (
3 4
1 0

). (
𝑎 0
0 0

) = (
3𝑎 0
𝑎 0

) Ɇ 𝐴 ∩  𝐵, we 

conclude that A ∩ B cannot be a left ideal. 

Since (
𝑎 0
0 0

) . (
3 4
1 0

) =  (
3𝑎 4𝑎
𝑎 0

) Ɇ 𝐴 ∩  𝐵, we 

conclude that A ∩ B cannot be a right ideal. 

Therefore A ∩ B is neither a left ideal nor a right ideal 

of R. 

Definitions: (i) An ideal I of R is said to be a maximal 

ideal if it is maximal in the set of all proper ideals of R. 

i. A ring R is called simple if it has exactly two 

ideals (that is, (0) is the maximal ideal of R). 

ii. A ring R is said to be primitive if (0) is the 

largest amongst the ideals of R contained in 

the maximal right ideal. 

iii. An ideal P of R is said to be prime if A, B are 

two ideals of R, and AB ⊆ P ⇒ A ⊆ P or B ⊆ 

P (equivalently, a, b ∈ R and aRb ⊆ P ⇒ a ∈ 

P or b ∈ P). 

We allude to Herstein, Hungerford, Lambek, or 

Satyanarayana and Syam Prasad for essential 

definitions and results which are not said here. In this 

thesis we utilize the expression "Ring" to mean a 

cooperative ring. 
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