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Abstract

In this paper, we use the fuzzy set and fuzzy real numbers to define the classes of fuzzy sequence spaces
lM(X,/i,ﬁ) and lM(X, }_L, D, L) by using the Orlicz function. Also, we explore some linear topological
structures of the spaces. Further, we introduce a paranorm to study some properties of the spaces. Finally, we
define a class l_M(X,/T,ﬁ,L), and using the concept of A, — condition, to show the relation between

(X, Ap,L)and ly(X,A4P,L).
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1. Introduction

Before the introduction of Fuzzy Logic, mathematics was limited only to two conclusions that
are true and false (1 & 0) only. But in 1965, Zadeh [1] was the first to establish the concept of
fuzzy set and fuzzy set operations. After that several authors have studied various branches of its
theory and applications and an enormous number of authors have employed the fuzzy set and

fuzzy real numbers in various sequence spaces. Motloka [ 2] defined the boundedness and
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convergence of a fuzzy sequence and demonstrated that any convergent sequence of fuzzy
numbers is bounded. Similarly, Nanda [ 3] defined a new metric to show that a space of a
convergent and bounded sequence of Fuzzy real numbers is complete. Later on, Et. M. Savas and
Altinok H. [4] proposed certain classes of fuzzy number sequences, examined them, and
analyzed some of their properties such as completeness, solidity, symmetry, convergence free,
and also looked at various inclusion relations that were pertinent to these classes. Kim, J.M., and
et al. [ 10] established fuzzy norms for the novel idea of a fuzzy normed space and investigated
how to express a dual space of sequences. Furthermore, the systematic investigation of fuzzy
normed linear spaces with various features is discussed [ 11, 12]. In 2021, Paudel and Pahari [7]
used the concept of fuzzy to study a few topological structures in fuzzy metric space. Also, in
2022, Paudel and et al.[8] studied the topological structure of P- bounded variation of difference
sequence space and introduced the generalized form of the P- bounded variation of fuzzy real
numbers.

In this paper, we study the fuzzy sequence spaces defined by Orlicz function with different
properties of the spaces. The idea of the Orlicz space was first put forth by Wladyslaw in 1932.

The Orlicz function concept is then used by Lindenstrauss and Trzafriri [ 5] to construct the

[x]|

sequence  space as  follows ly ={x €Ew: Yp_1 M (;) < oofor some p > 0}.

x|

The space [,, with the norm ||x]|| defined by ||x]|| = inf{p =0: Yo M (7) < 1} becomes a

Banach Space and it IS called Orlicz sequence space
A function M : [ 0,0) — [0,0), which is continuous, non-decreasing, and convex with the
properties that M(0) = 0, M(t) > 0and M(t) —» 0ast — oo is called an Orlicz function.

The Orlicz function M is said to be convex if M(at; + (1 — a)t,) < aM(ty) + (1 — a)M(t,).
Using the concept of Orlicz function Kuldip, Ayhan and Sonali [ 6] introduced some ideal
convergent sequence spaces of fuzzy numbers, examined applications of infinite matrices and A-
convergence of a order in an effort to examine some of the algebraic and topological aspects of

these spaces. In 2015, Sarma [9] created a few fuzzy sequence spaces derived from the Orlicz function,

investigated their various characteristics, and established a few inclusion properties.

2. Definition and Preliminaries:

Let F be the universe of discourse and X € F. Then X is said to be fuzzy set in F if X is the
collection of order pair (x, uy) where, uy : F — [0,1]. So that the fuzzy set X in F is defined as
X ={(x,ux(x)):x € Fand uy : F - [0,1]}. The function uy is called the membership

function and px (x) is called the degree of the element x.
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Here, uy(x) = 0 means x is not included in X, and u, (x) = 1 means x is fully included in X.
A fuzzy real number X is a fuzzy set, or a mapping between each real number (R) and its
membership value X(t), where X : R — I = [0, 1] such that
The fuzzy number X is
i. normal if there exists t € R such that X(t) =1

ii. convexiffort,se Rand0 <6 <1, X(@t+(1-8)s)= min{X(t), X(s) }
iii. X is upper semi-continuous if fore > 0,X~1([0,a + ¢€)), for all a € I, is open in the usual
topology of R.
The a- level set on X is denoted by X* and defined by X% = {te R: X(t) = a }.
The collection of all fuzzy numbers with membership values greater than zero is referred to as
support of fuzzy a number.
Assume that R(I) represents the collection of all fuzzy numbers with upper semi-continuity and
compact support. In other words, X € R(I) then for any ae[0, 1],

xo = {U X(t) = a forae (0,1]
St X@®)>afora=0

Suppose X,Y € R(I), then the addition [X + Y]%and (aX)* for ae[0,1] is defined as [X +
Y]* = X%+ Y2 and (aX)® = a X*

Every real number r € R can be expressed as a fuzzy real number # as follow:

> 1fort=r
[, —
(® {0 otherwise
Now, let us consider a relation p : RUxR() - R defined by
a . e Sl A

where, R* = R U {0} and d is a metric defined on the set G of closed and bounded intervals
X = [ x;,x,]on the real line R defined as
d(A,B) = max {|x; — y1l, [xz = yz[} for X =[xy, x;] and ¥ = [y, , y,]€ G .
Then, p defines a metric on R(I)and (R(/), p) is a complete metric space.
The metric p defined on R(I) is said to be translation invariant if
pX+Y,Z+Y)=p5(X,2)
Consider a binary operation *: [0, 1] x [0, 1] — [0, 1] satisfying the following conditions
(1) 1*xx=x,
(i) xxy=yx* X
(ilf) x*y>p=* qwheneverx>pandy > q,

(iv) (xxy)xz)=x*(yxz),forall x,y,z,p,q €[ 0,1]
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Then the binary operation = is called continuous triangular norm (continuous t-norm) [ 15]
Example: Let, a* b =min (a, b), then * is a continuous t-norm.
Let F be a vector space and X is a fuzzy seton F x ( 0,00) and = is a continuous t-norm then the
3-tuple (F, X, *)is called fuzzy normed space[14] if
i. X(x,t)>0
ii. X(x,t) =1ifandonly ifx=0
iii. X(ax,t)zX(x,ﬁ)forath.

iv. X, t)«X(y,s) <X(x+yt+s)

V. X(x,.):(0,0)—[0,1]is continuous.
Vi, gim X(x,t) =1and ltirrol X(x,t) =0

A complete fuzzy normed space is called Fuzzy Banach Space .

t

for all
t+]|x||

Example: Let (F, ||.]|) be a linear normed space and defined a mapping X(x,t) =

x €X,t>0. Then (F, X, .) is a fuzzy normed space.

[I]l

Let (F,||.]]) be a normed linear space and define a mapping X(x,t) = e~ for all x € Xand
t>0. Then (F, X, .) isafuzzy normed space.
Paranormed Space [ 9]: Let X be a vector space. A function & : X — R satisfying the following
i. £0)=0
ii. &(x) = Oforall x €X.
iii. &(—x) = §(x)forall x € X.
iv. E(x+y)<&x)+&(y),forall x,y €X

V. if (a,,) is a sequence of scholars with a,, - aasn — o and {x,} is a sequence of

such that €(x,, — x) » 0asn — o then &(a,x,, — ax) - 0asn — o is called paranormed
and (X, €) is paranormed space.
We note that a paranorm & with &(x) = 0 implies x = 0 is called total paranorm.
Bounded fuzzy set: A fuzzy set A in X is said to be bounded above if there exists a fuzzy
number M in X such thata < M forall a € A and M s called upper bound for A.
The fuzzy number M is called the supremum of A if M is an upper bound of Aand M < W

for any upper bound W of A and we write M = sup a.
a€A

Also, fuzzy set A in X is said to be bounded below if there exists a fuzzy number m in X such

that b > m forall b € A and m is called lower bound for A.
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The fuzzy number m is called the infimum of A if m is an upper bound above of Aand m > W

for any lower bound W of A and we write m = ;rel/fl b.

A sequence of fuzzy numbers X = (X},) is said to be bounded if the set { X}, : k € N} is bounded.
A sequence X = (X;,) of fuzzy numbers is said to converge to a fuzzy number X, and we write

lilank = X, if, for every € > 0, there exists a positive integer n, = n(¢) such that p(X, , X,) <

eforallk > n,
Limit supremum and limit infimum [16 ]: LetX = { X} be a bounded sequence of fuzzy
numbers. The limit infimum and supremum of the sequence are defined as

liminfX, = lim inf X, andlim sup X;, = lim lim X,

n-o k=n n-o k2n

We note that the limit infimum or limit supremum of the bounded sequence of fuzzy numbers
may not exist.
Let w(F) denote the set of all sequences of fuzzy numbers. Then any subsequence of w(F) is
sequence space and is called fuzzy sequence space.
A,- condition [1]: An Orlicz function M is said to satisfy A,- condition for all values of t if there
exists a constant y > 0 such that M (2t)) < yM(t).
We note that an Orlicz function M satisfy the relation M (kt) < kM (t) forallt withO<k < 1.
A fuzzy numbers is sequence space w(F) of said to be solid if (Y;) € w(F) whenever Y| <
| X, |for all k € N for some (X) € w(F).
In this paper we use the inequality |a + b|Px < D{|a|Pk + |b|Pk} where a,b € R,0 < p;, <
suppy = Land D = max { 1,2L71}.

3. Main Works

Let p = (p,) and § = (q;) be any two sequences of strictly positive real numbers and A (1) be
sequence of non-zero real numbers. Let us introduce the following classes of fuzzy sequences as

follows:

- (M Xl
lM(X,/l,p)= X =Xy): X € w(F),k=1and ZM T < oo for somep > 0
k=1

oo pk/
= _ 1Ak Xl /2
lM(X,/l,p,L)z X=0X,): X, €w(F),k=1and M T < o for somep >0
k=1

where, szp P = L.

Remark: The class [,,( X ,A,p, L) is a subset of the class [, (X ,A,p).
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For simplicity, when p, = 1 for all values of k , let us denote | by m and when A, = 1 for all
values of k then we write a by b.

For the sake of simplicity, let us indicate (X ,24,7) by ly(X,4) when p, = 1=1 for all
values of k, and I, ( X, 4,9 ) by Ly(X,p) when k =1 for all values of k. Also if p, = 4, = 1
then we write 1, (X) for L, ( X ,4,p).

Theorem 3.1: Let 1 = (4;) and 1 = (uy) be non-zero sequences of real numbers and let ¢, =
|i—’;|k > 1. Then Ly, (X, 1,7) € ly(X,ap) ifand only if lim inft;, > 0.

Proof: Suppose that lim infit, > 0 holds and let X = (X;) € ly(X,4,7). Then there exists
p > 0suchthat ¥, M ("—A’LX:"i) < o,

Here, lim inf,t, > 0 so there exists m and a positive integer K such that m|u, |Px < |1, |P* for

k > K. Let us choose p; > 0 such that p < m p;. Then

P luk XkllPE\ _ oo | | PR || X ||P
Zk:lM( p1 = Lz M p1

| Ak PRIl X |IP
< 5 (L

mpa

=y M (nakxknpk)

mp;

P IAx Xi|IPk
< Zk=1M(—p ) < o
LY M (—””"j"”pk) = X=X €ly(X,a,p) and hence wm(X,4p) €
1

(X, @5p).

Conversely, suppose that Iy (X,4,9) S ly(X,&p). Then we show that, lim infit; > 0.
But we assume that lim inf,t, = 0, then we can find a sequence k(n) of integers such that
k(n+1)=2kn)=1,n>1 for which 2| Ay [P < g [P
Let, Z € X with ||Z|| = 1 and define X = (X},) by the relation

-1 _2/ n
Ay P Z fork=k(n),n=>1

Xk =
0 otherwise
. n_z/Pk(n) Z”pk
Let, p > 0. Then Z,}”le(W) = ¥Y2 .M -

— Yoo 1Z||Pk

- Zk=1M( nzp )

= Yo 1

- Zk=1 M (nzp)
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<M (%) Z,‘j’:ln—lz < oo (using the convexity of M)

O (A X lIPx _
ZM<” o el )<oo =X € ly(X,17).

k=1

-1 "% Pl
i) Ay m R ZH

oo Il g X i |IPK 0
Also, oy M (LX2) = 5o |

p p
‘P‘k(n) Pk
-y He(n)
—Zk=1M n2p
> Y-t (p) ee
. Z&]\/[(W):m = X ¢ ly(X,&p). This contradicts that [,(X,4p) S

ly(X,i,p). Sowe must have lim inf, t;, > 0. Proved

Theorem3.2: 1, (X,z,p) € ly(X,4,p) ifand only if lim supyt;, < co.
Proof: Suppose that lim sup,t; < oo holds and let X = (X;) € (X, i, p). Then there exists

p > 0 such that Zﬁ:lM(M) )5

Here, lim sup,t; > 0, so there exists L > 0 and a positive integer K such that L | [Pk > |4, |Pk
fork > K.

Let us choose p, > 0 such that L p < p,. Then,

I4s XglPRY _ |4k PEIIX [Pk
S M ( = oM
P2 P2

L|ug |PElIX|[PE
< D ()

=y M (llﬂkallpk)

mpy

Pk
2 Z;.lo:lM(uuk);ku ) <o

Pk _
LYRM (M) <o.= X =(X;) €ly(X,4p) andhence

P1
2 ly(X,5p) Sly(X,4D).
Conversely, suppose that 1, (X, p) € ly(X,4,p). Then we show that, lim sup,t;, < o.
But we assume that lim sup,t, = o. Then we can find a sequence k(n) of integers such that

lk(n) Pk
)

k(n+1) = k(n) = 1,n = 1 for which > n2,
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Let, Z € X with ||Z]| = 1 and define X = (X}) by the relation

_ -2
X, = {,uk(ln) n /pre fork=k(n),n=>1
0 otherwise

-2 Pk(n)
o K[ n Py g
Let, p > 0. Then Y5, M (“""T") = YoM ,
— v liz||Pke)
_2”=1M< n?p )
— o0 1
=T M ()

=M (%) Y1z <o (using the convexity of M) -

0 1Ak Xi Pk =
Zkle(%)<oo =Xe l,(X,Lp).

1 _2/pk( ) pk(n)
Ak(n) Kg(m) M m z
A X |IPk (n)
Also, e, M (12E) =y
P P

Bien) |PROV
Ak(n)

— [ee]

. Zn=1 M nzp

> sl -
b T M () — 0 = X @ 1y(X54P):

This contradicts that 1, (X , @, p) S ly(X,4,9 ). Sowe must have lim supjt;, < . Proved.

Theorem 3.3: If 0 <p, < gy < oo forall but finitely many values of k, then
(X, 4p) Sly(X,2,70).

Proof: Let X = (X)) € ly(X,4,p), then there exists p > 0 such that ¥, M (—”’1"){"”17'{) < oo,

p
This relation shows that there exists K > 1 such that ||4, X, || < 1. So that

A Xill9 < (1A, XellPx forall k > K = 3, M (W) <Y2 . M (%) < oo. This

shows that X = (Xx) € Iy(X,4,q ) and hence then 1,( X, 4,p) € ly( X, 4 7).
4. Linear Topological Structure.
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In this section, we will discuss about the linear topological structure of [,,( X, i, p, L).
Theorem 4.1: The class I, ( X, i, p ) forms a linear space.

Proof: Suppose X = (X)) and Y = (Y;) be two elements of 1,,( X,4,p ). Then there exists

| A X lIPk

P2

p; > 0 and p, > 0 such that, };-; M (”'1";(—“'1%) < oo and Z,‘j’:lM( ) < oo, Then for
1

any scholar @ and g3, let us choose p; > 0 such that
2Dp; max(1, |al) < pz and 2Dp, max(1, |B]) < ps

o |4 k<an+ﬁYk)||’”") = (Iloc/1 Xk + BA Ykllp")
Now, Yo M( =Y. M
Zk—l 03 Zk—l p3

D||a,1kxk||pk +D||mkxk||pk
P3

-
(using the inequality |X + Y|Pk < D{|X|Pk + |Y|Pk}) where, supp, = L and D = max{1,2-71}.

= Zl?le(

D Pk, x| " Dlﬁlpkllzkykll"">
P3 P3

k—1M (2_[)1 “/1 ka”pk + E ||/1kyk”10k)
= 15 () ¢y e () <o

P2

p

LY M (na (axk:mn ) <o
3

= aX, +pY € ly(X,A4p) for X = (Xi), Y = (Vi) € ly(X,24,p) and for any scalar «

and 8. Hence l,( X,4,p) is linear. Proved.

Theorem 4.2 : If 1,,( X, 4,7 ) is linear space then lim supy.t; < oo.

Proof : Suppose lM(X,/T,ﬁ) is a linear space, but we assume that lim sup;t, = co. Then
there exists a sequence {k(n)} of positive integers such that k(n + 1) > k(n) = 1,n > 1, for
which Pk(n) >n for each n=1.
Let us choose Z € X such that ||Z|| = 1 and define a sequence X = (Xy) by the relation

-2
X, = {A;(ln) n P 7 fork = k(n),n > 1
0 otherwise
Then for k=k(n),n=1, we have,

“%/p Pk
n 'Pk(mz

1 Ik X |IPK o
Zk:lM (%) = Zk=1M
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= Z/?=1M($)
<M (%) Sy < o0
~X ¢ ly(X,4D)

Since, pymy>n for n=1 so for any p>0 and a=4 we have,

-2 Pk(n)
an Pk z
o Ak aXllPk o
Yk=1M (—) = Yn=1 M
P p
Pk(n) n
_ 4 4 1\ _
- seaM(E2) 2 srM(E) 252 M(d) = «

Thus, aXy € Iy(X,4,p), which is a contradicts the linearity of I, (X,4,p). So that

lim supyt, < co. Proved.

Theorem 4.3: (i) (X, A4P) S Ly(X, p) ifand only lim infi |4, | > 0,
@i)ily(X,p) < lM(X, A, ﬁ) if and only lim supy | |Pk < oo ;
(i) (X, p) = (X, 2, p)ifandonly 0 < lim infi |, [Pk < lim supy|d; [Pk < oo

Theorem 4.4 : If inf py =1 > 0, then lM(X ,/’T,ﬁ,L) forms a paranormed space with respect
5 Mg Xl
to gX)= inf{p >0: Y° .M (%) < 1}.
. g Xl
Proof: Let us consider a set A(X) = {p >0: Yo M <%) < 1}. We assume that

_ sy
infpy=0>0and g(X) = inf{p >0: ZZ’:lM(%) < 1}. Then,

pk/
i g(0) = inf{p >0: Y2 M <%> < 1}

ol /s
:inf{p>0:2,‘f=1M< > >S1}=0

_ _ Pk/
i.  g(=X)= inf{p >0: %9, M <M) < 1}
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= Xl /1
:inf{p >0: z,?le<$> < 1}

p

e Xill 1
=inf{ p > 0: z;;zm(%) < 1}

=gX)

iii. Let, X,Y € Iy(X,4p,L). Then there exists p; > 0,p, > 0 such that ,

o e Xl o e il 1
wipn (PR < o and e, (Mt ) < o
1

p2
Let p3s = p1+p2 where, p1,P2 € AX). Then,
1Ak ( Ilp_k 1Ak ( I|&
o0 kK(Xk4Yill L ) yoo k(Xk+Ygll 'L
Zk:l M ( pP3 ) Zk:l Y < P1tp2 >

P1 9] Pk P2 0 Pk
< _M(AX L)+ > M InYilT
e Y1 M (A Xkl N D=1 M Akl

<P 1+22_1=1
p1tp2 p1tp2

19’
Sy M <M) £

P3

This relation shows that p; = p; + p, € A(X ). So that
gX+Y)<p3=p,+p,forp; €AX)andp, € A(Y).
e, g X+Y)<p;+p,
ie, gX+Y) <X+ ).
Hence the triangle inequality holds.
iv.  Suppose X™ = (X*) be a sequence in Iy, ( X ,4,p,L) such that g(X™) - 0 asn - oo

and (a,) be a sequence of scholar such that o, — a. Then
9(euX™) =inf{p: TE M (e IT) < 1]
=inf{p: T M (lael T 1KR1E) < 1]
< inf{p: E M (G IAXRNT) < 1), where G =P |q.

Then for § = max(1, G), we have,
Pk

gla,X™) < inf{p Y rel M <w> < 1}. Taking % = ytheny > 0 and
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g(an)?”)Sinf{p=Z§2°=1 (”Aki “> }

=Bg(X™) > 0 asn — oo.
~ g(a,X™) > 0asn - .
Now, let a, = 0 asn — oo then for 0 < € < 1, we can find a positive integer N such that |a,| <

inf

l
v pe = 1> 0, s0 that oy | T < (2)E for all

gfor alln > Nandlet X €l,(X,4p,L). Since

n=N.

llanArX Ilp_k I Ip_k 1Ak X Ilp_k

(o) nAX L o0 L X L
Zk=1M<—a ek >= Zk=1M<—ak — )

p p
U mDie
<5 M (sL Akl L)
p
Thus, if p € A(e'X ) then, p € A(a,X) i.e A(c'X ) € A(a, X).

Taking infimum over such that p's, then we get

inf{p: peAd(a,X)}< inf{p i pE A(e%)?)} = s%inf{p : p € AX)}

_ 28 .
This shows that, g(a,X) < g(etX ) foralln > N. Thatis g(a,X) » 0 as n — o.

Hence, lM( X, AP, L) is paranormed space. This completes the proof.

Theorem 4.5 : The paranormed space ( Iy ( X ,4,p,L), g) is complete.

Proof: Let {X}} be a Cauchy sequence in I (X,4,p,L). Let r >0 be a fixed positive real
number such that M(r) > 1. Then for every §> 0, there exists an integer N > 1, such that
gXi—X)) <Zforallij =N . . .(%)

By the definition of paranorm we see that,

||lka )ka ” L

g(®)-9(X)

Y1 M

<1foralli,j = N.

Hlka XkX || L

So that, M )
g(X)-gX)

<1< M(r) for all i,j =N and for all k> 1. Since M non

”Aka X || G

decreasing , we have
9(Xl)-9(X)
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Then from (*)we have, ||/1ka ka || < €. This shows that {)_(}(} is a Cauchy sequence in R(I) and R(I)
is complete, so there exists Xj in R(/) for all k > 1 such that X} — X as i — oo. To complete the proof
we show that X= (X,) € Iy(X,4,p,L).

Let us choose p > 0 such that g(X' — X)) < p < eforalli,j > N.

Pk
”/’lk)_(}(—kk)_(]k” L < Z,O(o_lM ”Aka AkX ”

p 9(Xi)-9 X

Y1 M <1foralli,j =N

Since, M is continuous, taking limit as j — oo we see that”

EERTY ult

Yr-1 M <1 for all i>N.

Taking infimum of such p's, we get
1%

inye pp | IAFAE] I <1

“lkxk 7\kX || L

= g(X'—X) = inf{p: Tp_ M < 1;<p <eforalli>N.

= g(X'—X)<eforalli=N.
This shows that X' — X as i — co and clearly, X' — X € 1,,( X,4,p,L), forall i > N. Hence,
Xtand X' — X are the elements of 1,,( X,4,p,L). So that, X = X' — (X' = X) € ly(X,45,L). That

isX € 1y(X,4,p,L). This completes the proof.

Theorem 4.6: The space lM( g, D, L) is normal.

Pi
Proof: Let X = (X;) € ly(X,Ap,L). Sothat ¥, M (@) < oo for some p > 0.

Let (o) be sequence of scalars such that |ay | < 1 for all k = 1. Since M is non-decreasing, we have

I |Ip_k I Ip_k I Ilp_k
o0 Ak apXpll L\ _ oo agl L A Xgll L

P p

Pk
Ak Xkl L
< Zﬁle(%%w

Thus, (axXy) € Ly(X,A4,p,L).So Uy (X,4,p,L) is normal.
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Let us introduce the sub-class I, ( X ,4,p,L) of I,( X, 4,7, L)defined as follow

Pk
A Xl 7

l_M(X,/T,ﬁ,L) = {X = (X,): X, € w(F) ZM< ) < o for every p > 0}
k=1

p

Theorem 4.7: The Orlicz function M satisfies A, — condition then Iy (X ,4,D0,L) = Ly(X,4,p,L).
Pk
Y 7 L
Proof: Suppose X = (X;) € ly/( X,4,7,L) then for some > 0, 32, M <—”}‘k );k” > <
Let us consider an arbitrary p; > 0.
P1

Pk Pk
Case I: If p < py, then clearly we have, Y5, M <M> < YoM (%) < oo and

hence we get X = (X;) € Ly (X ,4,p,L).

P
Case Il : If p>p, , then by using A,—condition , we get Zlciole(”?\k;(k”L):
1
e-{|2 II&
I oAk Xiell L

Pk
Ak Xill L
< p oo || k Ak
K= Zk=1M<—p <

where, K is the number involved | A, — condition of M.

Hence Iy(X,4p,L) € ly(X,A4,p,L). And hence ly(X,47P,L) = ly(X,A4D,L).

Conclusion: In this study, we define sequence spaces using the concepts of fuzzy sets and fuzzy
real numbers Iy, ( X ,4,p ) and ly,( X,4,7,L) with the help of Orlicz function and studied some
linear topological properties of the spaces. Some theorems related to those spaces have been
proved. Further, we have defined a paranorm to show that the space lM( X, AP, L) is complete.

Moreover, space lM( X, AP, L) is shown as a normal space.
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