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Abstract 

In this paper, we use the fuzzy set and fuzzy real numbers to define the classes of fuzzy sequence spaces 

𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) and 𝑙𝑀( 𝑋, �̅�, �̅�, 𝐿) by using the Orlicz function. Also, we explore some linear topological 

structures of the spaces. Further, we introduce a paranorm to study some properties of the spaces. Finally, we 

define a class 𝑙�̅�( 𝑋 , �̅�, 𝑝 ̅, 𝐿), and using the concept of  ∆2 − condition, to show the relation between 

𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) and 𝑙�̅�( 𝑋 , �̅�, 𝑝 ̅, 𝐿). 
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1. Introduction 

Before the introduction of Fuzzy Logic, mathematics was limited only to two conclusions that 

are true and false (1 & 0) only. But in 1965, Zadeh [1] was the first to establish the concept of 

fuzzy set and fuzzy set operations. After that several authors have studied various branches of its 

theory and applications and an enormous number of authors have employed the fuzzy set and 

fuzzy real numbers in various sequence spaces. Motloka [ 2] defined the boundedness and 
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convergence of a fuzzy sequence and demonstrated that any convergent sequence of fuzzy 

numbers is bounded. Similarly, Nanda [ 3] defined a new metric to show that a space of a 

convergent and bounded sequence of Fuzzy real numbers is complete. Later on, Et. M. Savas and 

Altinok H. [4] proposed certain classes of fuzzy number sequences, examined them, and 

analyzed some of their properties such as completeness, solidity, symmetry, convergence free, 

and also looked at various inclusion relations that were pertinent to these classes. Kim, J.M., and 

et al. [ 10] established fuzzy norms for the novel idea of a fuzzy normed space and investigated 

how to express a dual space of sequences. Furthermore, the systematic investigation of fuzzy 

normed linear spaces with various features is discussed [ 11, 12]. In 2021, Paudel and Pahari [7] 

used the” concept of fuzzy to study a few topological structures in fuzzy metric space. Also, in 

2022, Paudel and et al.[8] studied the topological structure of P- bounded variation of difference 

sequence space and introduced the generalized form of the P- bounded variation of fuzzy real 

numbers.                                                                                                                               

 “In this paper, we study the fuzzy sequence spaces defined by Orlicz function with different 

properties of the spaces.   The idea of the Orlicz space was first put forth by Wladyslaw in  1932. 

The Orlicz function concept is then used by Lindenstrauss and Trzafriri  [ 5] to construct the 

sequence space as follows  𝑙𝑀 = { 𝑥 ∈ 𝜔: ∑ 𝑀 (
|𝑥|

𝜌
)∞

𝑘=1 < ∞𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜌 > 0}.                                                               

The space  𝑙𝑀 with the norm ‖𝑥‖ defined by  ‖𝑥‖ = inf { 𝜌 > 0 ∶  ∑ 𝑀 (
|𝑥|

𝜌
)∞

𝑘=1 < 1} becomes a 

Banach Space and it is called Orlicz sequence space                                                                       

A function 𝑀 ∶ [ 0, ∞) → [0, ∞), which is continuous, non-decreasing, and convex with the 

properties that 𝑀(0) = 0, 𝑀(𝑡) > 0 and 𝑀(𝑡) → 0 as 𝑡 → ∞  is called an Orlicz function. 

The Orlicz function M is said to be convex if  𝑀( 𝛼𝑡1 + (1 − 𝛼)𝑡2) ≤ 𝛼𝑀(𝑡1) + (1 − 𝛼)𝑀(𝑡2). 

Using the concept of  Orlicz function Kuldip, Ayhan and Sonali [ 6]  introduced some ideal 

convergent sequence spaces of fuzzy numbers, examined applications of infinite matrices and  λ-

convergence of α order  in an effort to examine some of the algebraic and topological aspects of 

these spaces. In 2015, Sarma [9] created a few fuzzy sequence spaces derived from the Orlicz function, 

investigated their various characteristics, and established a few inclusion properties. 

2. Definition and Preliminaries: 

Let F be the universe of discourse and 𝑋 ⊆ 𝐹. Then X is said to be fuzzy set in F if X is the 

collection of order pair (𝑥, 𝜇𝑋) where,  𝜇𝑋 ∶ 𝐹 → [0,1]. So that the fuzzy set X in F is defined as 

𝑋 = {(𝑥, 𝜇𝑋(𝑥)): 𝑥 ∈ 𝐹 and 𝜇𝑋 ∶  𝐹 → [0,1]}. The function 𝜇𝑋 is called the membership 

function and 𝜇𝑋(𝑥) is called the degree of the element x. 
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Here, 𝜇𝑋(𝑥) = 0 means x is not included in X, and 𝜇𝑥(𝑥) = 1 means x is fully included in X. 

A fuzzy real number X is a fuzzy set, or a mapping between each real number (ℝ) and its 

membership value X(t), where X ∶  ℝ → 𝐼 = [ 0, 1] such that 

The fuzzy number X   is  

i. normal if there exists 𝑡 ∈ ℝ such that X(t) = 1 

  ii.  convex if for 𝑡 , 𝑠 ∈ ℝ and 0  ≤ 𝜃 ≤ 1 ,  X (𝜃 t + ( 1 – 𝜃) s) ≥  min { X(t) , X(s) } 

iii. X is upper semi-continuous if for𝜀 > 0, 𝑋−1([0, 𝑎 + 𝜀)), for all 𝑎 ∈ 𝐼, is open in the usual 

topology of ℝ. 

The 𝛼- level set on X is denoted by 𝑋𝛼  and defined by 𝑋𝛼 = { 𝑡 𝜖 ℝ: 𝑋(𝑡) ≥ 𝛼 }.” 

The collection “of all fuzzy numbers with membership values greater than zero is referred to as 

support   of fuzzy a number.  

Assume that ℝ(𝐼) represents the collection of all fuzzy numbers with upper semi-continuity and 

compact support.  In other words, 𝑋 ∈ ℝ(I) then for any 𝛼𝜖[0, 1],   

𝑋𝛼 =  {
𝑡 ∶  𝑋(𝑡) ≥ 𝛼 𝑓𝑜𝑟𝛼𝜖 ( 0, 1]

𝑡 ∶  𝑋(𝑡) > 𝛼 𝑓𝑜𝑟𝛼 = 0 
 

Suppose 𝑋, 𝑌 ∈ ℝ(𝐼), then the addition [𝑋 + 𝑌]𝛼and (𝑎𝑋)𝛼 for 𝛼𝜖[0, 1] is defined as [𝑋 +

𝑌]𝛼 =  𝑋𝛼 +  𝑌𝛼  and (𝑎𝑋)𝛼 = 𝑎 𝑋𝛼 

Every real number  r ∈ ℝ can be expressed as a fuzzy real number �̅�  as follow: 

�̅�(𝑡) =  {
 1 𝑓𝑜𝑟 𝑡 = 𝑟

 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Now, let  us consider a relation �̅�  ∶  ℝ(𝐼 x ℝ(𝐼) → ℝ∗  defined by   

�̅�(𝑋 , 𝑌) =
𝑆𝑢𝑝

0 ≤ 𝛼 ≤ 1
𝑑(𝑋𝛼  , 𝑌𝛼) 

 where, ℝ∗ =  ℝ ∪ {0} and d is a metric defined on the set G  of closed and bounded intervals         

  X = [ 𝑥1 , 𝑥2]on the real line ℝ defined as   

𝑑( 𝐴 , 𝐵 )  =   𝑚𝑎𝑥 { |𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|} for X = [ 𝑥1, 𝑥2] and  𝑌 = [𝑦1 , 𝑦2]∈ 𝐺 . 

Then, �̅� defines a metric on ℝ(𝐼)and  (ℝ(𝐼), �̅� ) is a complete metric space. 

The metric �̅�  defined on  ℝ(𝐼) is said to be translation invariant if 

�̅�(𝑋 + 𝑌, 𝑍 + 𝑌) = �̅�( 𝑋, 𝑍) 

Consider a binary operation  ∗: [0, 1] × [0, 1] → [0, 1] satisfying the following conditions 

(i)   1 ∗ x = x, 

(ii)  x∗ y = y∗ x 

 (iii)  x∗ y ≥ p∗ q whenever x ≥ p and y ≥ q, 

 (iv)  (x∗ y)∗ z) = x∗ (y∗ z) , for all 𝑥, 𝑦 , 𝑧, 𝑝 , 𝑞 ∈ [ 0, 1] 
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Then the binary operation ∗  is called continuous triangular norm (continuous t-norm)”[ 15] 

Example: Let, “a∗ b = min (a, b), then ∗ is a continuous t-norm. 

Let F be a vector space and X is a fuzzy set on 𝐹 ×  ( 0, ∞) and ∗ is a continuous t-norm then the 

3-tuple ( 𝐹, 𝑋 , ∗) is called fuzzy normed space[14] if  

i. 𝑋(𝑥 , 𝑡) > 0 

ii. 𝑋(𝑥, 𝑡) = 1 if and only if x = 0 

iii. 𝑋(α 𝑥, 𝑡) = 𝑋( 𝑥 ,
𝑡

|𝛼|
 )for α ≠ 0. 

iv. 𝑋 (𝑥, 𝑡) ∗ 𝑋(y, s)  ≤ 𝑋( 𝑥 + 𝑦, 𝑡 + 𝑠) 

v. 𝑋(𝑥 , .): ( 0, ∞) → [ 0, 1] is continuous. 

vi. lim
𝑡→∞

𝑋(𝑥, 𝑡) = 1 and lim
𝑡→0

X(𝑥, 𝑡) = 0 

A complete fuzzy normed space is called Fuzzy Banach Space  . 

Example: Let ( 𝐹, ‖. ‖) be a linear normed space and defined a mapping 𝑋(𝑥, 𝑡) =
𝑡

𝑡+‖𝑥‖
 for all 

𝑥 ∈ 𝑋, t > 0. Then  ( 𝐹, 𝑋, . ) is a fuzzy normed space.                                                                     

Let ( 𝐹, ‖. ‖) be a normed linear space and define a mapping X(𝑥, 𝑡) = 𝑒−(
‖𝑥‖

𝑡
)
 for all 𝑥 ∈ X and     

t > 0. Then ( F, X, . ) is a fuzzy normed space. 

Paranormed  Space [ 9]: Let X be a vector space. A function ξ ∶ X → ℝ satisfying the following 

i. ξ(0) = 0 

ii. ξ(𝑥) ≥ 0for all 𝑥 ∈ X. 

iii. ξ(−𝑥) = ξ(𝑥)for all 𝑥 ∈ X. 

iv. ξ( 𝑥 + 𝑦) ≤ ξ(𝑥) + ξ(y), for all 𝑥, 𝑦 ∈ X 

v. if (𝑎𝑛) is a sequence of scholars with 𝑎𝑛 → 𝑎 as 𝑛 → ∞  and {𝑥𝑛} is a sequence of  

such that  ξ(𝑥𝑛 − 𝑥) → 0 as n → ∞  then ξ(𝑎𝑛𝑥𝑛 − 𝑎𝑥) → 0 as 𝑛 → ∞ is called paranormed 

and   (X, ξ) is paranormed space. 

We note that a paranorm ξ  with ξ(𝑥) = 0 implies x = 0 is called total paranorm. 

Bounded fuzzy set: A fuzzy set A  in X is said to be bounded above if there exists a fuzzy 

number M  in X such that 𝑎 ≤ 𝑀 for all 𝑎 ∈ 𝐴 and M  is called upper bound for A.” 

The fuzzy number M  is called the supremum of A  if  M  is an upper bound  of A and  𝑀 ≤ 𝑊 

for any upper bound W of A and we write 𝑀 = sup
𝑎∈𝐴

𝑎. 

Also, fuzzy set A  in X  is said to be bounded below if there exists a fuzzy number m in X such 

that 𝑏 ≥ 𝑚 for all 𝑏 ∈ 𝐴 and m  is called lower bound for A. 
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“The fuzzy number m is called the infimum of A if m is an upper bound above of A and 𝑚 ≥ 𝑊 

for any lower bound W of A and we write  𝑚 = inf
𝑏∈𝐴

𝑏. 

A sequence of fuzzy numbers 𝑋 = (𝑋𝑘) is said to be bounded if the set { 𝑋𝑘 ∶ 𝑘 ∈ ℕ} is bounded. 

A sequence 𝑋 = (𝑋𝑘) of fuzzy numbers is said to converge to a fuzzy number 𝑋𝑜 and we write 

lim
𝑘

𝑋𝑘 =  𝑋𝑜 if, for every ε > 0, there exists a positive integer 𝑛𝑜 = 𝑛(𝜀) such that �̅�(𝑋𝑘 , 𝑋𝑜) <

𝜀 for all k ≥ 𝑛𝑜 

Limit supremum and limit infimum [16 ]: Let X = { 𝑋𝑘} be a bounded sequence of fuzzy 

numbers. The limit infimum and supremum of the sequence are defined as  

𝑙𝑖𝑚 𝑖𝑛𝑓𝑋𝑘 =  lim 
𝑛→∞

inf
𝑘≥𝑛

𝑋𝑘andlim sup 𝑋𝑘 =   lim
𝑛→∞

lim
𝑘≥𝑛

𝑋𝑘 

We note that the limit infimum or limit supremum of the bounded sequence of fuzzy numbers 

may not exist. 

Let ω(F) denote the set of all sequences of fuzzy numbers. Then any subsequence of ω(F) is 

sequence space and is called fuzzy sequence space. 

∆𝟐- condition [1]: An Orlicz function M  is said to satisfy ∆2- condition for all values of t if there 

exists a constant 𝛾 > 0 such that 𝑀(2𝑡)) ≤  𝛾𝑀(𝑡).” 

We note that an Orlicz function M satisfy the relation 𝑀(𝑘𝑡) ≤ 𝑘𝑀(𝑡) for all t  with 0 < k < 1. 

A fuzzy numbers is sequence space 𝜔(𝐹) of said to be solid if (𝑌𝑘) ∈ 𝜔(𝐹) whenever |𝑌𝑘| ≤

|𝑋𝑘|for all 𝑘 ∈ ℕ for some (𝑋𝑘) ∈ 𝜔(𝐹). 

In this paper we use the inequality |𝑎 + 𝑏|𝑝𝑘 ≤ 𝐷{|𝑎|𝑝𝑘 + |𝑏|𝑝𝑘} where 𝑎, 𝑏 ∈ ℝ , 0 < 𝑝𝑘 ≤

sup 𝑝𝑘 = 𝐿 and 𝐷 = max { 1, 2𝐿−1}. 

3. Main Works 

Let �̅� = (𝑝𝑘) and �̅� = (𝑞𝑘) be any two sequences of strictly positive real numbers and �̅� (𝜆𝑘) be 

sequence of non-zero real numbers. Let us introduce the following classes of fuzzy sequences as 

follows: 

𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) =  {𝑋 = (𝑋𝑘):  𝑋𝑘 ∈ 𝜔(𝐹), 𝑘 ≥ 1 and ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)

∞

𝑘=1

< ∞ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜌 > 0} 

𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) = {𝑋 = (𝑋𝑘):  𝑋𝑘 ∈ 𝜔(𝐹), 𝑘 ≥ 1 and ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌
)

∞

𝑘=1

< ∞ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜌 > 0} 

where, 
𝑠𝑢𝑝

𝑘
 𝑝𝑘 = 𝐿.  

Remark: The class 𝑙𝑀( 𝑋 , 𝜆, 𝑝 ̅, 𝐿) is a subset of the class  𝑙𝑀( 𝑋 , 𝜆, 𝑝 ̅). 
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For simplicity, when 𝑝𝑘 = 1 for all values of k , let us denote l by m and when 𝜆𝑘 = 1 for all 

values of k then we write a by b.  

For the sake of simplicity, let us indicate 𝑙𝑀( 𝑋 , 𝜆, 𝑝 ̅) by 𝑙𝑀( 𝑋 , �̅�) when 𝑝𝑘 = 1=1 for all 

values of k, and 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) by 𝑙𝑀( 𝑋 , 𝑝 ̅) when k =1 for all values of k. Also if 𝑝𝑘 =  𝜆𝑘 = 1 

then we write 𝑙𝑀(𝑋) for 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). 

Theorem 3.1:  Let �̅� = (𝜆𝑘) and �̅� = (𝜇𝑘) be non-zero sequences of real numbers and let 𝑡𝑘 =

 |
𝜆𝑘

𝜇𝑘
| , 𝑘 ≥ 1. Then 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅)  ⊆  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) if and only if 𝑙𝑖𝑚 𝑖𝑛𝑓𝑘𝑡𝑘 > 0. 

Proof: Suppose that 𝑙𝑖𝑚 𝑖𝑛𝑓𝑘𝑡𝑘 > 0 holds and let 𝑋 = (𝑋𝑘) ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). Then there exists 

𝜌 > 0 such that  ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 < ∞. 

Here,  𝑙𝑖𝑚 𝑖𝑛𝑓𝑘𝑡𝑘 > 0  so there exists m and a positive integer K such that 𝑚|𝜇𝑘|𝑝𝑘 ≤ |𝜆𝑘 |
𝑝𝑘 for 

𝑘 ≥ 𝐾. Let us choose 𝜌1 > 0 such that 𝜌 ≤ 𝑚 𝜌1.  Then        

                  ∑ 𝑀 (
‖𝜇𝑘 𝑋𝑘‖𝑝𝑘

𝜌1
)∞

𝑘=1 =  ∑ 𝑀 (
|𝜇𝑘|𝑝𝑘‖𝑋𝑘‖𝑝𝑘

𝜌1
)∞

𝑘=1  

                                                  ≤ ∑ 𝑀 (
|𝜆𝑘 |

𝑝𝑘‖𝑋𝑘‖𝑝𝑘

𝑚 𝜌1
)∞

  𝑘=1  

                                                  = ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝑚𝜌1
)∞

𝑘=1  

                                                 ≤   ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1  < ∞                

       ∴ ∑ 𝑀 (
‖𝜇𝑘 𝑋𝑘‖𝑝𝑘

𝜌1
)∞

𝑘=1 ⟹ 𝑋 = (𝑋𝑘) ∈ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) and hence  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅)  ⊆

 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). 

Conversely, suppose that 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅)  ⊆  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). Then we show that,  𝑙𝑖𝑚 𝑖𝑛𝑓𝑘𝑡𝑘 > 0. 

But we assume that  𝑙𝑖𝑚 𝑖𝑛𝑓𝑘𝑡𝑘 = 0, then we can find a sequence 𝑘(𝑛)  of integers such that  

𝑘(𝑛 + 1) ≥ 𝑘(𝑛) ≥ 1 , 𝑛 ≥ 1 for which 𝑛2|𝜆𝑘(𝑛)|𝑝𝑘 ≤ |𝜇𝑘|𝑝𝑘.                                                    

Let, 𝑍 ∈ 𝑋  with ‖𝑍‖ = 1 and define 𝑋 = (𝑋𝑘) by the relation   

                                              𝑋𝑘 =  {
𝜆𝑘(𝑛)

−1  𝑛
−2

𝑝𝑘(𝑛)  ⁄  
𝑍  𝑓𝑜𝑟 𝑘 = 𝑘(𝑛), 𝑛 ≥ 1

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Let, 𝜌 > 0. Then  ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 =  ∑ 𝑀 (
‖ 𝑛

−2
𝑝𝑘(𝑛)  ⁄  

𝑍‖

𝑝𝑘

𝜌
)∞

𝑘=1  

                                                             = ∑ 𝑀 (
‖𝑍‖𝑝𝑘

𝑛2𝜌
)∞

𝑘=1  

                                                             = ∑ 𝑀 (
1

𝑛2𝜌
)∞

𝑘=1  



P a g e  | 113 

 

 IJRTS Journal of Research | 2347-6117 | Volume 24 | Issue 01 | Version 1.3 | Jan-Jun 2023   

                                                              ≤ 𝑀 (
1

𝜌
) ∑

1

𝑛2
∞
𝑘=1  < ∞     ( using the convexity of M)  

∴  ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)

∞

𝑘=1

< ∞ ⟹ 𝑋 ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅).  

Also, ∑ 𝑀 (
‖𝜇𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 =   ∑ 𝑀 (
‖𝜇𝑘(𝑛)  𝜆𝑘(𝑛)

−1  𝑛
−2

𝑝𝑘(𝑛)  ⁄  
𝑍‖

𝑝𝑘

𝜌
)∞

𝑛=1  

                                          = ∑ 𝑀 (
‖

𝜇𝑘(𝑛) 

𝜆𝑘(𝑛) 
‖

𝑝𝑘

𝑛2𝜌
)∞

𝑘=1  

                ≥  ∑ 𝑀 (
1

𝜌
)∞

𝑘=1 =  ∞                                                   

  ∴  ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 = ∞ ⟹ 𝑋 ∉  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). This contradicts that 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅)  ⊆

 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). So we must have 𝑙𝑖𝑚 𝑖𝑛𝑓𝑘𝑡𝑘 > 0. Proved 

 

Theorem 3.2:    𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) ⊆ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) if and only if  𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘  < ∞. 

Proof: Suppose that 𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘 < ∞ holds and let 𝑋 = (𝑋𝑘) ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). Then there exists 

𝜌 > 0 such that  ∑ 𝑀 (
‖𝜇𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 < ∞. 

Here, 𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘 > 0, so there exists 𝐿 > 0 and a positive integer K such that 𝐿 |𝜇𝑘|𝑝𝑘 > |𝜆𝑘 |
𝑝𝑘 

for 𝑘 ≥ 𝐾. 

Let us choose 𝜌2 > 0 such that 𝐿 𝜌 ≤  𝜌2. Then, 

                  ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌2
)∞

𝑘=1 =  ∑ 𝑀 (
|𝜆𝑘 |

𝑝𝑘‖𝑋𝑘‖𝑝𝑘

𝜌2
)∞

𝑛=1  

                                                  ≤ ∑ 𝑀 (
𝐿|𝜇𝑘 |

𝑝𝑘‖𝑋𝑘‖𝑝𝑘

 𝜌2
)∞

  𝑛=1  

                                                  “= ∑ 𝑀 (
‖𝜇𝑘 𝑋𝑘‖𝑝𝑘

𝑚𝜌1
)∞

𝑛=1  

                                                 ≤   ∑ 𝑀 (
‖𝜇𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑛=1  < ∞                

       ∴ ∑ 𝑀 (
‖𝜆𝑘 𝑘 𝑋𝑘‖

𝑝𝑘

𝜌1
)∞

𝑘=1 < ∞. ⟹ 𝑋 = (𝑋𝑘)  ∈ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅)   and hence 

     ∴ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) ⊆ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). 

Conversely, suppose that 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) ⊆ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). Then we show that,  𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘 < ∞. 

But we assume that  𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘 = ∞. Then we can find a sequence 𝑘(𝑛)  of integers such that  

𝑘(𝑛 + 1) ≥ 𝑘(𝑛) ≥ 1 , 𝑛 ≥ 1 for which |
𝜆𝑘(𝑛)

𝜇𝑘(𝑛)
|

𝑝𝑘

> 𝑛2. 
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Let, 𝑍 ∈ 𝑋  with ‖𝑍‖ = 1 and define 𝑋 = (𝑋𝑘) by the relation   

𝑋𝑘 = {𝜇𝑘(𝑛)
−1  𝑛

−2
𝑝𝑘(𝑛)  ⁄  

𝑓𝑜𝑟 𝑘 = 𝑘(𝑛), 𝑛 ≥ 1

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Let, 𝜌 > 0. Then  ∑ 𝑀 (
‖𝜇𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 =  ∑ 𝑀 (
‖ 𝑛

−2
𝑝𝑘(𝑛)  ⁄  

𝑍‖

𝑝𝑘(𝑛)

𝜌
)∞

𝑛=1  

                                                             = ∑ 𝑀 (
‖𝑍‖

𝑝𝑘(𝑛)

𝑛2𝜌
)∞

𝑛=1  

                                                             = ∑ 𝑀 (
1

𝑛2𝜌
)∞

𝑛=1  

                                                              ≤ 𝑀 (
1

𝜌
) ∑

1

𝑛2
∞
𝑛=1  < ∞     ( using the convexity of M) ∴

 ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 < ∞ ⟹ 𝑋 ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅).  

Also, ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 =   ∑ 𝑀 (
‖𝜆𝑘(𝑛) 𝜇𝑘(𝑛)

−1  𝑛
−2

𝑝𝑘(𝑛)  ⁄  
𝑍‖

𝑝𝑘(𝑛)

𝜌
)∞

𝑛=1  

                                          = ∑ 𝑀 (
|
𝜇𝑘(𝑛) 

𝜆𝑘(𝑛) 
|

𝑝𝑘(𝑛)

𝑛2𝜌
)∞

𝑛=1  

                ≥  ∑ 𝑀 (
1

𝜌
)∞

𝑛=1 =  ∞”                                                                             

     ∴  ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 = ∞ ⟹ 𝑋 ∉  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅).  

  This contradicts that 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) ⊆ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅).  So we must have 𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘 < ∞. Proved. 

 

 

Theorem 3.3:  “If  0 < 𝑝𝑘 ≤  𝑞𝑘 < ∞  for all but finitely many values of k, then   

                           𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) ⊆ 𝑙𝑀( 𝑋 , �̅�, 𝑞 ̅). 

Proof: Let 𝑋 = (𝑋𝑘) ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅), then there exists 𝜌 > 0 such that ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 < ∞. 

This relation shows that there exists K ≥ 1 such that ‖𝜆𝑘 𝑋𝑘‖ < 1. So that  

‖𝜆𝑘 𝑋𝑘‖𝑞𝑘  ≤ ‖𝜆𝑘 𝑋𝑘‖𝑝𝑘 for all 𝑘 ≥ 𝐾  ⟹ ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑞𝑘

𝜌
)∞

𝑘=1  ≤ ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 < ∞. This 

shows that  𝑋 = (𝑋𝑘) ∈  𝑙𝑀( 𝑋 , �̅�, 𝑞 ̅) and hence then 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) ⊆ 𝑙𝑀( 𝑋 , �̅�, 𝑞 ̅).” 

 

4. Linear Topological Structure. 
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In this section, we will discuss about the linear topological structure of   𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). 

Theorem 4.1: The class 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) forms a linear space. 

Proof:  Suppose 𝑋 =  (𝑋𝑘) and 𝑌 =  (𝑌𝑘) be two elements of  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). Then there exists 

ρ1 > 0 and ρ2 > 0 such that, ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌1
)∞

𝑘=1 < ∞ and  ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌2
)∞

𝑘=1 < ∞. Then for 

any scholar 𝛼  and 𝛽, let us choose ρ3 > 0 such that  

                   2𝐷𝜌1 max(1, |𝛼|) ≤ 𝜌3 and   2𝐷𝜌2 max(1, |𝛽|) ≤ 𝜌3 

Now, ∑ 𝑀 (
‖𝜆 𝑘(𝛼𝑋𝑘+𝛽𝑌𝑘)‖

𝑝𝑘

𝜌3
)∞

𝑘=1 = ∑ 𝑀 (
‖𝛼𝜆 𝑘𝑋𝑘 + 𝛽𝜆 𝑌𝑘‖

𝑝𝑘

𝜌3
)∞

𝑘=1          

                                                  ≤ ∑ 𝑀 (
𝐷‖𝛼𝜆 𝑘 

𝑋𝑘‖
𝑝𝑘 

+ 𝐷‖𝛽𝜆 𝑘 
𝑋𝑘‖

𝑝𝑘 

𝜌3
)∞

𝑘=1             

(using the inequality |𝑋 + 𝑌|𝑝𝑘 ≤ 𝐷{|𝑋|𝑝𝑘 +  |𝑌|𝑝𝑘} ) where, sup 𝑝𝑘 = 𝐿  and  𝐷 = max{1 , 2𝐿−1}. 

= ∑ 𝑀 (
𝐷 |𝛼|𝑝𝑘‖𝜆 𝑘 𝑋𝑘‖

𝑝𝑘 

𝜌3
+  

𝐷 |𝛽|𝑝𝑘‖𝜆 𝑘 𝑌𝑘‖
𝑝𝑘 

𝜌3
)∞

𝑘=1  

≤   ∑ 𝑀 (
1

2𝜌1
 ‖𝜆 𝑘

𝑋𝑘‖
𝑝𝑘

+  
1

2𝜌2
 ‖𝜆 𝑘

𝑌𝑘‖
𝑝𝑘

)

∞

𝑘=1

 

                                        =
1

2
∑ 𝑀 (

‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌1
)∞

𝑘=1 +  
1

2
∑ 𝑀 (

‖𝜆𝑘 𝑌𝑘‖𝑝𝑘

𝜌2
)∞

𝑘=1  < ∞                            

   ∴  ∑ 𝑀 (
‖𝜆 (𝛼𝑋𝑘+𝛽𝑌𝑘‖𝑝𝑘

𝜌3
)∞

𝑘=1  < ∞ 

⟹ 𝛼𝑋𝑘 + 𝛽𝑌𝑘  ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) for 𝑋 =  (𝑋𝑘), 𝑌 =  (𝑌𝑘) ∈ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) and for any scalar 𝛼  

and 𝛽. Hence  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) is linear. Proved. 

 

Theorem 4.2 : If    𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) is linear space then 𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘 < ∞. 

“Proof :  Suppose   𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) is a linear space, but we assume that 𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘 = ∞. Then 

there exists a sequence {k(n)} of positive integers such that k(n + 1) > 𝑘(𝑛) ≥ 1 , 𝑛 ≥ 1, for 

which pk(n) > 𝑛 for each 𝑛 ≥ 1.                                                                                                               

Let us choose 𝑍 ∈ 𝑋 such that ‖Z‖ = 1 and define a sequence 𝑋 = (Xk) by the relation”  

 𝑋𝑘 = {𝜆𝑘(𝑛)
−1  𝑛

−2
𝑝𝑘(𝑛)  ⁄  

𝑍  𝑓𝑜𝑟 𝑘 = 𝑘(𝑛), 𝑛 ≥ 1

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Then for 𝑘 = 𝑘(𝑛), 𝑛 ≥ 1, we have,                                                                                      

∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 =  ∑ 𝑀 (
‖𝑛

−2
𝑝𝑘(𝑛)⁄

𝑍‖

𝑝𝑘

𝜌
)∞

𝑘=1  
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                                =  ∑ 𝑀 (
1

𝑛2𝜌
)∞

𝑘=1  

                               ≤ 𝑀 (
1

𝜌
) ∑

1

𝑛2
∞
𝑘=1  < ∞s 

∴ 𝑋 ∉  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). 

Since, 𝑝𝑘(𝑛) > 𝑛 for 𝑛 ≥ 1, so for any 𝜌 > 0 and 𝛼 = 4 we have,                              

∑ 𝑀 (
‖𝜆𝑘 𝛼𝑋𝑘‖𝑝𝑘

𝜌
)∞

𝑘=1 =  ∑ 𝑀 (
‖4𝑛

−2
𝑝𝑘(𝑛)⁄

𝑍‖

𝑝𝑘(𝑛)

𝜌
)∞

𝑛=1  

                                    =  ∑ M (
4

pk(n)

n2 ρ
)∞

n=1     ≥  ∑ M (
4n

n2 ρ
)∞

n=1   ≥ ∑ M (
1

 ρ
)∞

n=1 =  ∞ 

Thus, α Xk  ∉  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅), which is a contradicts the linearity of  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅). So that 

𝑙𝑖𝑚 𝑠𝑢𝑝𝑘𝑡𝑘 < ∞.  Proved. 

 

 

Theorem 4.3: “(i)  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅)  ⊆   𝑙𝑀( 𝑋 , 𝑝 ̅) if and only 𝑙𝑖𝑚 𝑖𝑛𝑓𝑘|𝜆𝑘 | > 0, 

(ii) 𝑙𝑀( 𝑋 , 𝑝 ̅)  ⊆   𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) if and only 𝑙𝑖𝑚 𝑠𝑢𝑝𝑘|𝜆𝑘 |
pk < ∞ ; 

(iii) 𝑙𝑀( 𝑋 , 𝑝 ̅) =  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) if and only      0 < 𝑙𝑖𝑚 𝑖𝑛𝑓𝑘|𝜆𝑘 |
pk  ≤ 𝑙𝑖𝑚 𝑠𝑢𝑝𝑘|𝜆𝑘 |

pk < ∞ 

 

 

Theorem 4.4 : If  infk pk = 𝑙 > 0, then   𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) forms a paranormed space with respect 

to       𝑔(�̅�) = inf { 𝜌 > 0 ∶  ∑ 𝑀 (
‖𝜆𝑘  𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌
)∞

𝑘=1 ≤ 1}. 

Proof: Let us consider a set 𝐴(�̅� ) = { 𝜌 > 0 ∶  ∑ 𝑀 (
‖𝜆𝑘  𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌
)∞

𝑘=1 ≤ 1}.  We assume that 

infk pk = 𝑙 > 0 and 𝑔(�̅�) = inf { 𝜌 > 0 ∶  ∑ 𝑀 (
‖𝜆𝑘  𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌
)∞

𝑘=1 ≤ 1}. Then, 

i. 𝑔(0) = inf { 𝜌 > 0 ∶  ∑ 𝑀 (
‖𝜆𝑘  0‖

𝑝𝑘
𝐿⁄

𝜌
)∞

𝑘=1 ≤ 1} 

                            = inf { 𝜌 > 0 ∶  ∑ 𝑀 (
‖0‖

𝑝𝑘
𝐿⁄

𝜌
)∞

𝑘=1 ≤ 1} = 0 

ii. 𝑔(−𝑋 ̅) = inf { 𝜌 > 0 ∶  ∑ 𝑀 (
‖𝜆𝑘 (− 𝑋𝑘)‖

𝑝𝑘
𝐿⁄

𝜌
)∞

𝑘=1 ≤ 1}          
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             = inf { 𝜌 > 0 ∶  ∑ 𝑀 (
‖−𝜆𝑘 𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌
)∞

𝑘=1 ≤ 1} 

             = inf { 𝜌 > 0 ∶  ∑ 𝑀 (
‖𝜆𝑘  𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌
)∞

𝑘=1 ≤ 1} 

             = 𝑔(𝑋 ̅) 

 

iii. Let,  𝑋 , 𝑌 ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). Then there exists ρ1 > 0 , ρ2 > 0 such that , 

∑ 𝑀 (
‖𝜆𝑘  𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌1
)∞

𝑘=1 < ∞ and ∑  𝑀 (
‖𝜆𝑘  𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌2
)∞

k=1 < ∞ 

Let 𝜌3 =  𝜌1 + 𝜌2 where,  𝜌1 , 𝜌2 ∈ 𝐴(�̅� ). Then,                                                               

         ∑ 𝑀 (
‖λk(𝑋k+𝑌𝑘‖

pk
L

𝜌3
)∞

k=1 =  ∑ 𝑀 (
‖λk(𝑋k+𝑌𝑘‖

pk
L

𝜌1+𝜌2 
)∞

k=1  

                                              ≤ 
𝜌1

𝜌1+𝜌2 
 ∑ 𝑀 (‖λk𝑋k‖

pk
L )∞

k=1  + 
𝜌2

𝜌1+𝜌2 
∑ 𝑀∞

𝑘=1 ‖λk𝑌k‖
pk
L ” 

                                              ≤
𝜌1

𝜌1+𝜌2 
. 1 + 

𝜌2

𝜌1+𝜌2 
. 1 = 1                                                                                    

          ∴  ∑ 𝑀 (
‖λk(𝑋k+𝑌𝑘‖

pk
L

𝜌3
)∞

k=1 ≤ 1 

This relation shows that 𝜌3 =  𝜌1 + 𝜌2 ∈  𝐴(�̅� ). So that  

𝑔(𝑋 + 𝑌) ≤ 𝜌3 = 𝜌1 + 𝜌2 for 𝜌1  ∈ 𝐴(�̅� ) and 𝜌2 ∈ 𝐴(�̅� ). 

i.e, 𝑔(𝑋 + 𝑌) ≤ 𝜌1 + 𝜌2 

i.e, 𝑔(𝑋 + 𝑌) ≤ (�̅�) + (�̅�). 

“Hence the triangle inequality holds. 

iv. Suppose �̅�𝑛 = (�̅�𝑘
𝑛) be a sequence in 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) such that 𝑔(�̅�𝑛) → 0 as 𝑛 → ∞ 

and (αn) be a sequence of scholar such that  αn → α. Then  

𝑔(αn�̅�𝑛) = inf { 𝜌 ∶  ∑ 𝑀 (‖𝜆𝑘𝛼𝑘�̅�𝑘
𝑛‖

𝑝𝑘
𝐿 )∞

𝑘=1 ≤ 1} 

                = inf { 𝜌 ∶  ∑ 𝑀 (|𝛼𝑘|
𝑝𝑘
𝐿  ‖𝜆𝑘�̅�𝑘

𝑛‖
𝑝𝑘
𝐿 )∞

𝑘=1 ≤ 1} 

                ≤  inf { 𝜌 ∶  ∑ 𝑀 (𝐺
𝑝𝑘
𝐿  ‖𝜆𝑘�̅�𝑘

𝑛‖
𝑝𝑘
𝐿 )∞

𝑘=1 ≤ 1} , where G = 
sup

𝑛
 |αn|. 

Then for 𝛽 = max(1 , 𝐺), we have, 

 𝑔(αn�̅�𝑛) ≤ inf { 𝜌 ∶  ∑ 𝑀 (
𝛽 ‖𝜆𝑘�̅�𝑘

𝑛‖

𝑝𝑘
𝐿

𝜌
)∞

𝑘=1 ≤ 1}.  Taking 
ρ

β
= γ then γ > 0 and  
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𝑔(αn�̅�𝑛) ≤ inf { 𝜌 ∶  ∑ 𝑀 (
 ‖𝜆𝑘�̅�𝑘

𝑛‖

𝑝𝑘
𝐿

𝛾
)∞

𝑘=1 ≤ 1}. 

                =𝛽𝑔(X̅n) → 0 as 𝑛 → ∞. 

∴ 𝑔(αn�̅�𝑛) → 0 as 𝑛 → ∞. 

Now, let αn → 0 as 𝑛 → ∞ then for 0 < 𝜀 < 1, we can find a positive integer N such that |αn| ≤

ε for  all 𝑛 ≥ 𝑁 and let  𝑋 ∈ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). Since 
inf
k

 𝑝𝑘 = 𝑙 > 0, so that |αn|
pk
L ≤ (ε )

𝑙

L for all 

𝑛 ≥ 𝑁.  

 ∑ 𝑀 (
‖𝛼𝑛𝜆𝑘�̅�𝑘‖

𝑝𝑘
𝐿

𝜌
)∞

𝑘=1 =  ∑ 𝑀 (
|𝛼𝑘|

𝑝𝑘
𝐿  ‖𝜆𝑘�̅�𝑘‖

𝑝𝑘
𝐿

𝜌
)∞

𝑘=1 ” 

                                    ≤ ∑ 𝑀 (
𝜀

𝑙
𝐿 ‖𝜆𝑘�̅�𝑘‖

𝑝𝑘
𝐿

𝜌
)∞

𝑘=1  

“Thus, if 𝜌 ∈ 𝐴(𝜀𝑙�̅� ) then,  𝜌 ∈ 𝐴(𝛼𝑛�̅�) 𝑖. 𝑒 𝐴(𝜀𝑙�̅� ) ⊆ 𝐴(𝛼𝑛�̅�). 

Taking infimum over such that 𝜌′𝑠, then we get 

inf{ 𝜌 ∶  𝜌 ∈ 𝐴(𝛼𝑛�̅�) } ≤ inf { 𝜌 ∶  𝜌 ∈ 𝐴 (𝜀
𝑙
𝐿�̅�)} = 𝜀

𝑙
𝐿 inf{ 𝜌 ∶  𝜌 ∈ 𝐴(�̅�)} 

This shows that, 𝑔(𝛼𝑛�̅�) ≤ 𝑔(𝜀
𝑙

𝐿�̅� ) for all𝑛 ≥ 𝑁. That is 𝑔(𝛼𝑛�̅�) → 0 𝑎𝑠 𝑛 → ∞. 

Hence,  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) is paranormed space. This completes the proof. 

 

Theorem 4.5 : The paranormed space ( 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿), 𝑔) is complete. 

Proof:  Let {X̅k
i } be a Cauchy sequence in  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). Let  r  > 0 be a fixed positive real 

number such that 𝑀(𝑟) ≥ 1. Then for every 
ε

r
> 0, there exists an integer 𝑁 ≥ 1, such that                          

𝑔(X̅k
i − X̅k

j
) <

𝜀

𝑟
 for all 𝑖, 𝑗 ≥ 𝑁     .   .    . (*) 

By the definition of paranorm we see that,                                                                             

                                  ∑ 𝑀 (
‖𝜆𝑘X̅k

i −λkX̅k
j

‖

𝑝𝑘
𝐿

𝑔(X̅k
i )−𝑔(X̅k

j
)

) ≤ 1∞
𝑘=1  for all 𝑖, 𝑗 ≥ 𝑁. 

So that, 𝑀 (
‖𝜆𝑘X̅k

i −λkX̅k
j

‖

𝑝𝑘
𝐿

𝑔(X̅i)−𝑔(X̅
k
j

)
) ≤ 1 ≤ 𝑀(𝑟) for all 𝑖, 𝑗 ≥ 𝑁 and for all 𝑘 ≥ 1. Since M non 

decreasing , we have      
‖𝜆𝑘X̅k

i −λkX̅k
j

‖

𝑝𝑘
𝐿

𝑔(X̅k
i )−𝑔(X̅k

j
)

< 𝑟. 
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Then from (*)we have, ‖𝜆𝑘X̅k
i − λkX̅k

j
‖

𝑝𝑘
𝐿 <  𝜀. This shows that  {X̅k

i
} is a Cauchy sequence in ℝ(𝐼) and  ℝ(𝐼) 

is complete, so there exists �̅�k  in ℝ(𝐼) for all 𝑘 ≥ 1 such that �̅�k
i  ⟶ �̅�k as 𝑖 ⟶ ∞. To complete the proof 

we show that �̅�= (�̅�k) ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). 

Let us choose 𝜌 > 0 such that  𝑔(X̅i − X̅j) < 𝜌 < 𝜀 for all 𝑖, 𝑗 ≥ 𝑁. 

∑ 𝑀 (
‖𝜆𝑘X̅k

i −λkX̅k
j

‖

𝑝𝑘
𝐿

𝜌
) ≤ ∞

𝑘=1 ∑ 𝑀 (
‖𝜆𝑘X̅k

i −λkX̅k
j

‖

𝑝𝑘
𝐿

𝑔(X̅k
i )−𝑔(X̅k

j
)

)∞
𝑘=1 ≤ 1 for all 𝑖 , 𝑗 ≥ 𝑁 

Since, M  is continuous, taking limit as 𝑗 ⟶ ∞ we see that” 

“∑ 𝑀 (
‖𝜆𝑘X̅k

i −λkX̅k
j

‖

𝑝𝑘
𝐿

𝜌
) ≤  1∞

𝑘=1  for all 𝑖 ≥ 𝑁.                                                                                           

Taking infimum of such 𝜌′s, we get                                                           

inf ∑ 𝑀 (
‖𝜆𝑘X̅k

i −λkX̅k
j

‖

𝑝𝑘
𝐿

𝜌
) ≤  1∞

𝑘=1                                                                                                          

⟹ 𝑔(�̅�𝑖 − �̅� ) =  inf {𝜌: ∑ 𝑀 (
‖𝜆𝑘X̅k

i −λkX̅k
j

‖

𝑝𝑘
𝐿

𝜌
) ≤  1∞

𝑘=1 } ≤ 𝜌 < 𝜀 for all 𝑖 ≥ 𝑁. 

⟹ 𝑔(�̅�𝑖 − �̅� ) < 𝜀 for all 𝑖 ≥ 𝑁. 

This shows that �̅�𝑖 ⟶ �̅� as 𝑖 ⟶ ∞ and clearly, �̅�𝑖 − �̅� ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿), for all 𝑖 ≥ 𝑁. Hence,  

�̅�𝑖 and �̅�𝑖 − �̅� are the elements of  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). So that, �̅� =  �̅�𝑖 − (�̅�𝑖 − �̅�) ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). That 

is �̅� ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). This completes the proof. 

 

Theorem 4.6:  The space  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) is normal. 

Proof: Let  �̅� = (𝑋𝑘) ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). So that ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖

𝑝𝑘
𝐿

𝜌
)∞

𝑘=1 < ∞ for some 𝜌 > 0. 

Let (αk) be sequence of scalars such that |αk| ≤ 1 for all 𝑘 ≥ 1. Since M  is non-decreasing, we have 

 ∑ 𝑀 (
‖𝜆𝑘 𝛼𝑘𝑋𝑘‖

𝑝𝑘
𝐿

𝜌
)∞

𝑘=1  = ∑ 𝑀 (
|αk|

pk
𝐿  ‖λk  Xk‖

pk
𝐿

𝜌
)∞

k=1  

                                     ≤  ∑ 𝑀 (
‖λk  Xk‖

pk
𝐿

𝜌
)∞

k=1 < ∞ 

Thus, (𝛼𝑘𝑋𝑘) ∈  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿). So  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) is normal. 
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Let us introduce the sub-class  𝑙�̅�( 𝑋 , �̅�, 𝑝 ̅, 𝐿) of  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿)defined as follow 

 𝑙�̅�( 𝑋 , �̅�, 𝑝 ̅, 𝐿) = {𝑋 = (𝑋𝑘):  𝑋𝑘 ∈ 𝜔(𝐹)   ∑ 𝑀 (
‖𝜆𝑘 𝑋𝑘‖

𝑝𝑘
𝐿⁄

𝜌
)

∞

𝑘=1

< ∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜌 > 0} 

 

Theorem 4.7:  The Orlicz function M satisfies ∆𝟐 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  then  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) =  𝑙�̅�( 𝑋 , �̅�, 𝑝 ̅, 𝐿).” 

“Proof:  Suppose �̅� = (𝑋𝑘) ∈ 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) then for some > 0 , ∑ 𝑀 (
‖λk  Xk‖

pk
𝐿

𝜌
)∞

k=1 < ∞.                                                          

Let us consider an arbitrary ρ1 > 0. 

Case I: If 𝜌 ≤ ρ1, then clearly we have, ∑ 𝑀 (
‖λk  Xk‖

pk
𝐿

𝜌1
)∞

k=1 ≤  ∑ 𝑀 (
‖λk  Xk‖

pk
𝐿

𝜌
)∞

k=1 < ∞ and 

hence we get �̅� = (𝑋𝑘) ∈ 𝑙�̅�( 𝑋 , �̅�, 𝑝 ̅, 𝐿). 

Case II :  If 𝜌 > ρ1 , then by using ∆𝟐 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  , we get ∑ 𝑀 (
‖λk  Xk‖

pk
𝐿

𝜌1
)∞

k=1 =

 ∑ 𝑀 (
ρ

ρ1
‖λk  Xk‖

pk
𝐿

𝜌
)∞

k=1  

                                     ≤ K 
𝜌

𝜌1
 ∑ 𝑀 (

‖λk  Xk‖
pk
𝐿

𝜌
)∞

k=1 < ∞ 

where, K  is the number involved I ∆2 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 of M.  

Hence  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) ⊆  𝑙�̅�( 𝑋 , �̅�, 𝑝 ̅, 𝐿). And hence  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) =  𝑙�̅�( 𝑋 , �̅�, 𝑝 ̅, 𝐿). 

 

Conclusion: In this study, we define sequence spaces using the concepts of fuzzy sets and fuzzy 

real numbers 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅) and  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) with the help of Orlicz function and studied some 

linear topological properties of the spaces.”Some theorems related to those spaces have been 

proved. Further, we have defined a paranorm to show that the space 𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) is complete. 

Moreover, space  𝑙𝑀( 𝑋 , �̅�, 𝑝 ̅, 𝐿) is shown as a normal space. 
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